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COMMENTATIONES MATHEMATICAL UNIVIRSITAT1S CAROLINAl 

19,4 (1978) 

ON m-AKIBRAIC CLOSURES OF n-COMPACT ELEMENTS x ) 

Jana RIŠLINKOVÍ, Praha 

Abstract; Let m,n be arbitrary cardinals and let u be 
an m-algebraic closure operator on a complete lattice. Bids 
paper answers the following question; does u preserve the n-
compaeticity? 

Key words; n-eompact element, m-directecl set, m-alge-
braie closureoperator, m-algebraic closure system. 

AMS; 06A23 

Introduction. The authors of the paper [3] prove that 

every algebraic closure operator on a complete lattice preser­

ves the eompacticity. A natural question arises; Does it pre­

serve also the m-compacticity for any infinite cardinal m ? 

This paper will answer this question. 

Part 1 contains only definitions and some lemmas used in 

part 2. A closure operator on a complete lattice is called m-

algebraie, if it preserves the joins of m-directed subsets. 

Theorem 2.1 shows that if misn, then 

- if m is regular, then the m-algebraic closure of any 

n-eompaet element is n-compact, 

- if i is irregular, then the m-algebraic closure of any 

n-compaet element is max|m $n\-compact. 

Example 2.3 shows that the estimate of the eompacticity 

x) This paper has originated at the seminar Algebraic Founda­
tions of Quantum Theories, directed by Prof. Jiri Fabera. 
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for irregular m cannot be improved• Further, in an m-algeb-

raie lattice S0 (where m is regular), an element is m-com-

paet in *£# iff its m-algebraie closure is m-eompact in the 

closure of % • 

In the* whole paper, & * (L§&) will denote a given com­

plete lattice. If AS L, then Jl will denote the poset (A|^). 

Further, m and n denote infinite cardinals. 

I wish to thank my collie ague dr. Tero Sturm for his nu­

merous remarks and encouragement #iieh helped me to carry 

out this work. 

1. Preliminaries. 

!•!• Definition: Let m be an infinite cardinal and let 

)& * (Lf A-) be a complete lattice. We shall say that c € L is 

m-compct in £ , if for every X£ L such that e-srsup^X, there 

exists ISrX the cardinality of which is strict^ smaller than 

m and such that c^ eup«g 1 • 

!»2« Definition: A subset X of L is called m-direeted 

in 3tf if every subset f of X such that lfl*-m has an upper 

bound in X (where If I means the cardinality of 1 )| more ex­

actly; 

(¥ X^XHlfl-c m - * (JxftX)(VycD y a ) . 

T-*3» Definition: We shall say that a maoping u:L —£> L 

is an m-algebraic closure operator in •£ if 

1) u is a closure operator in £& 

2) for every m-direeted subset X of L there is 

u(suD|g X) = sup^u(X). 

1.4. Definition: V/e shal l soy that kSt L i s an m-algeb-
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raic closure system in <S& if 

1) A is a closure system in A 

2) for every m-directed subset*! of k it hoMs *up£ X '• 

= •UP<A|*)X* 

1*5» Remark: a) If we set m « ji<0 in the preceding 

definitions 1.1 - 1.4, we obtain the usual notions ©f a com­

pact element, a directed set, an algebraic closure operator 

or an algebraic closure systemf respectively. 

-**̂ » MSSL: (̂  generalization of Ward's Lemma) Let 

lisL—»L be a closure operator on e£ • Then for every XS L it 

holds: 

uCsup^X) « 8up(ua).^)uCX). 

Proof: Denote by A the poset (u(L)§£). Then *e have 

sup* uX<-*uCsup»g X), since for every xsX, it is uCx) St 

^uCsup^g X) and uCsup̂ g X) « uCL) is an upper bound of u(X) 

in A . Let for some y 6 Lf u(y) be an upper bound of u(X). 

Then u(y) is also an upper bound of X, since for every x€ X 

there is x* u(x)A u(y). Therefore, u(y)2rsup^If which imp­

lies uCyJjSruCsup̂ g X), i.e., uCsup^X) is the least upper 

bound of u(X) in A • 

It is known that usL—*• L is a closure operator iff 

u(L) is a closure system in £& • 

The following lemma shows that there is the same correspon­

dence between m-algebraic closure operators and m-algebraic 

closure systems on c£ t 

*-•*'• Lemma: Let usL—> L be a closure operator. lhenf 

for every infinite cardinal m, the following conditions are 

equivalent: 
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(1) u i s an m-algebraic closure operator on *& $ 

(2) u(L) i s an m-algebraie closure system in *L • 

Proof: Denote by A the complete l a t t i c e ( u ( L ) j ^ ) . 

Suppose that (1) holds and take any m-directed subset X of 

u(L). Since every element of X i s closed, we have 

sup^| X * staphs u(X). 

Further, by Lemma 1.6 

supjU(X) -B u(sup£ X) 

and by assumption (1) we obtain 

u(sup^ X) a sup^u(X) » sup^, X. 

These equal i t ies prove that u(L) i s an m-algebraie closure 

system in A • Now, suppose that (2) holds and take any m-di­

rected subset X of L. I t is easy to prove that u(X)-Su(L) i s 

m-direeted, too. Then we have, by the assumption, 

sup^u(X) « supi u(X) 

and by Lemma 1.6 

sup«u(X) « u(sup|gX). 

Hiese equal i t ies show that u i s m-algebraie. 

1*®* Lemma: Let m be a regular inf in i te cardinal and 

l e t X be a subset of L. Bien 

X ^ i s u p ^ I i fCX et l l U m l 

is m-direeted and sup^X* « sun^ X. 

Broof 5 Take any subset T of X* with the cardinal i ty 

s t r i c t l y smaller than m. For every t * T take exactly one 

XSX such that | T | * m and s u p ^ X c T | denote by % the union 

of a l l such 1 . 

Since cardinal m i s regular and lZ|« m, we have 
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supy, Z'e X* • 

Clearly, sup^ 2 is an upper bound of T and so, X**is m-direc-

ted. 

Now, denote by X the s e t 

X = I r t f X ; a u p ^ Y e X * $UU m | . 

Then 

SVLPU? X* » s u p ^ | s u p ^ Y | X # ^ { - suP*g U3E = s u p a 6 X 

which proves the second a s s e r t i o n of the lemma. 

> 

--•9» Lemma: Let m be an i r r e g u l a r ( i n f i n i t e ) c a r d i n a l 

and X a subse t of L. Then X i s m-di rec ted i f and only i f X i s 

m - d i r e c t e d , (m i s the c a r d i n a l successor of m.) 

Proof: I f X i s m - d i r e c t e d i t i s , of c o u r s e , m - d i r e c t ­

ed, t o o . Let us suppose t h a t X i s m-direc ted and Y i s a s u b ­

s e t of X wi th the c a r d i n a l i t y s t r i c t l y smal le r than m , i . e . 

l r l .6 m. We have to prove t h a t Y has an upper bound i n X. 

I f | Y | 4 m , t h e r e i s no th ing to p rove . 

I f |Yl * m, then t h e r e e x i s t s a family - ( Y ^ i e l } of s u b ­

s e t s of Y such t h a t t l ) < m f Y « , U - Y 4 and fo r every i e I , 

I Y | | = m.< m. Since X i s m-d i r ec t ed , we can choose an upper 

bound x^ of Y^ f o r every i e 1 . 

Denote by Z the s e t of a l l such X J • Then 

IZ . 4* ) 11«: mf thus Z has an upper bound x e X. Cle a r l y , 

x i s an upper bound of Y. 

£• ffl-aljgepraic c l o s u r e s of n-compact elements,* 

2«1« Theorem: Let m, n be i n f i n i t e c a r d i n a l s such t h a t 

men* I f u : L — } L i s an m-algebra ic c lo su re ope ra to r on a 

complete l a t t i c e «6 = (L; .4) and i f c e L i s an n-compact e l e -
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ment of $£ f then the following assertions hold: 

(i) if m is regular, then u(e) is n-compact in 

(u(L){4)| 

(ii) if m is irregular, then u(c) is maxim tn|-compact 

in (u(L){ £ ) . 

Proof: Let us denote by A the complete l a t t i c e (u(L ;.«) 

and by m* the smallest regular cardinal «& such that m£ 

.* cC . ( I . e . i f m i s regular , then if55 mf and, for i r regular 

m, » s m •) 

Let X be a subset of u(L) such that u(c)4-supj| X. Put 

X**<sup^!{ lll*fl*et YiSXf . 

Then by Lemmas 1.6 and 1.8 we have aup^uX* « sup* X# Furt­

her, u(L) is an m-algebraic closure system and the set uX* 

is m-direeted by Lemma 1.9{ hence we obtain 

(1) sup^uX* « sup^ X* • 

The mapping u:L—* L is a closure operator, thus 

(2) e£u(e)i- supj X 

and so, by (1) and (2) we obtain 

c* sup^uX* # 

The element x is,by the assumption, n-compact (where m ^ n ) , 

i.e. there exists a subset Z of uX* the cardinality of which 

is strictly smaller than n and such that 

c4» suO|# Z. 

Therefore 

u(c)J»u(sup^ Z) * sup* Z. 

For every as#Z choose exactly one 1S*X such that sup- Y * s 

- 748 -



and 11\< mt The set of a l l such T wi l l be denoted by Jr • 

Then, for X' * XJ^BX i t h o l s ; 

u (e )* sup^Z = sup^Csuj^ T|T#JL| » sup^ U£ • »«R4 X#-

Moreover, I Z . U | Z|-»? n and tx'lrf S lYl . 

( i ) I f m i s regular , we have If* m and 

- for m*rfn, 3S iTljtf m-l |J<ii. , 

- for m = n, S I T|< m « n by the regulari ty of m. 
y#l» 

This proves assert ion ( i ) of the theorem, 

( i i ) If m i s i r regular , we have Hfs i > i and 

- for m*cnf there is m £ nf and 

S L l Y j ^ m . l J l < n « max|m*,n|, 

- for m = n, there is m > n and 

3fi lT|-im«lT,|< m * maxfm ,n|. 
This proves assertion (ii) of the theorem. 

2»2» Example : For regular cardinal mf the assumption 

ia#n in Theorem 2.1 ( i ) camot be omitted as shown by the 

follomdng examole: Put m - 4*^ (then m i s regu la r ) , n = 46o9 

and le t i denote the set of a l l non-negative integers , L * 
s K ui,mGf &L + l § i / t c j f where c i s aiL arbi t rary element 

which does not belong to %V{&Q9G>Q • l j and define an or­

dering on Las follows: the set ®v i&QfmQ • 1§ is ordered 

by the usual ordering and for *any x, y * L f x-fcci^y, there i s 

x * c i f f x = 0f and c * y i f f y • ®Q + 1. (See F i g . l . ) 

*^®m*A Further, put A « L\«Cn»0§. Then A i s an 

Sff ..-algebraic closure system in i t -

* kh*9 •>), since J-i^-directed subsets of 

A are exactly those se ts X&k% which sa­

t isfy the condition 
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sup^ Xg X, 

and s o , f o r any 4*i-^-directed s e t I C A the re i s 

s u p ^ X = supj. X. 

(Here, A « (A| A ) . ) 

(Note that A is not an ^-algebraic closure system: 

e.g. N is directed, but sup̂ g N » 630+ 4>0 + 1 = sup* N.) 

Denote by u the ^-.-algebraic closure operator corres­

ponding to A. Then z(c) = c and c is compact in X but it 

is not compact int.Ji : 

e^sup^N « 0Q + i, 

but for any finite subset X of N, sup^X^N, i.e. sup * X is 

either incomparable with c or strictly smaller than c. 

The following example shows that the estimate in as­

sertion; (ii) of Theorem 2.1 cannot be improved: 

^•3. Example: Let m be any infinite irregular cardi­

nal. Then there exists a complete lattice i£ - (Lj^)f an 

m-algebraic closure operator u:L— y L and an element b € L, 

m-compact in £& , which is not m-compact in (u.(L)|.6). Of 

course, it is m -compatt in (u(L)|_6) by Theorem 2.1. 

Let us construct the set L: since the cardinal m is in­

finite and irregular, there exists a limit ordinal oo such 

that m « JK^ • Denote by I the set of all ordinals /3 < oo 

such that 4%» is regularv This set is not empty, since 

«25 € I. Take a family of posets '((B. } &~ ^M&I sia0n that 

the ordinal type "f (B^ $ £» ) i &^ and if ft , jr m I, 

(I ̂ y f then B * A B » 0, On the other hand, take a set 

Mtwith 1 M | « m and such that exp EnB* = 0 for every jS £ I. 

Further, take two different elements b, 1 such that 
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b ^ LA ffy u exp M, 1 <£ LJ B- u exp M and put L = 0 £ B u 

dfc\u exp M uCl l . The ordering on L wi l l be defined as follows; 

l e t 3J « ( %% B . )€> - ibj , «£ = (exp M -<]t>$;g). 

Then 

^ = 101© ca+«e)©4i j t 

where © denotes the ordinal sum and 2fi or + the cardinal one. 

(See Fig.2.) £ 

Fig.2. 

It is easy to prove that it is a complete lattice* Put 

A a L - <b,M|. 

Then A i s an m-slgebraie closure system in *£ : Take 'any in-

directed subset TSA. We shal l prove that sup^T « s u % ^ 

( i . e . sup^ T € A) • 

Suppose the contrary, sup^T^A. Then ei ther »up|g5 * t> 

or supj-T « M. 

1) Suppose aup^T » b . Bien necessarily T£ B. If there 

exis ts |l € I such that T i B * , then tT l -Wl B^l * ^ ^ * 

=- m# Since T i s m-directed, then supjgT « b*T - a contra­

dict ion, because we have supposed T*irA « L - 4 b , M | . If there 
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exist at l eas t two different elements / } , y of I such tha t 

t ^ c T n B p , t g ^ T r i B ^ i then l ^ t ^ ^ J l * 2< mt but onHy t» and 

1 are upper bounds of th i s subset - a contradiction again. 

2} Suppose sup^T » M. Then T must be a subset of 

exp Mf i . e . sup^T * U T -= M. Since the cardinal i ty of M i s 

m ( reca l l m i s i r regu la r ) , we can write M m
 A^JU^9 where 

iKUm and iM^-cm for every k^K. We have 

Thus, for every kcK, there exis ts a subset T^tST such that 

tT^|< m and M̂  SUT^. Since T i s m-directed, there exis ts 

XkC T such that U ' ^ S X ^ . Put & - <X .̂fk #Kf. Then | « | < i , 

X & T and therefore, 35 must have an upper bound in Tf s.**y 

Xf a contradiction to M = XcT. Hence we have preved that 4 

i s an m-algebraic closure system. 

Similarly, one can prove that b i s m-compact in «£ . (But 

i t i s not n-compact in *£ for any n< m; Let |{ i I be an or­

dinal such that n 4* J-%^^C 4*^* • Hi en supj* Bm « b , but no co-

f ina l subset of B has the cardinal i ty smaller than n.^ 

Denoting by u the m-algebraic closure operator corres­

ponding to A, we get u(b) = 1 and 1 i s not m-compact in Jl z 

for example, consider the set W «^4x} |x«M| . ffifA and 

sup^|1& = 1 . Further, the join of every proper subset$>% 1H 

i s a proper subset of M and thus i t i s different from 1. 

This completes the proof. 

Theorem 2.1 characterizes m-algebraic closures of n-

cvmoact elements for some cardinals mf n. In some l a t t i c e s 

we cnn characterize a l l n-compact elements of a closure sys­

tem, as shown by the following theorems. 
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^•*# Theorem: Let u:L—-*Lb*a closure operator ©njg 

and 04»CffL be a join-m-subsemilattice of %£, which genera­

tes L by jo ins . If b#u(L) i s an n-eompact element in 

(u(L) | i£) for some n^m, then there exis ts ce C such that 

b « u ( c ) . 

Proof : Denote by Jl the l a t t i c e Cu(L) | ^ ) . There ex­

i s t s a set BfiC such that b = sup,* B, i . e . 

b^-u(b) = u(sup* B) = sup^ u(B) 

(for the l a t e s t equality use Lemma 1.6). Suppose that b i s 

n-compact in A i we get B*£ B such that fB#|< n and 

(#) b ^ s u p ^ u B ' . 

Put c = sup̂ aiB'. Then ccC because n £ n and C is, by the 

assumption, a\ join-m-subsemilattiee, thus (4) expresses the 

same as 

(5) b£u(c). 

On the other hand, we have 

e = sup^ B *4r SUR^ B =- b 

and therefore, 

(6) u(c)*u(b) = b. 

Inequalities (5) and (6) prove the theorem. 

2«5« Lemma: If m is a regular cardinal, then the set 

C of all m-compact elements of $£, is a join-m-subsemilattice. 

Proof: Take any XSC with the cardinality strictly 

smaller than m and denote by a its supremum 4n *C .We shall 

prove that a is m-compact, i.e. a«C. 

Let a-Hsup.£ t where IS L. Then for every x«X, xj- sup-f 

and since X is a subset of C, then for everv xg X, there ex-
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i s t e 1 S T such that | I | < i and x^eup^T • Put 

Z * U-Cl x |x«Xf. 

By the regular i ty of m, we have | Z | < m and, obviously, 

a 6 8UP|« Z . 

2»^» Corollary; Let m be a regular cardinal , l e t $£ 

be an m-algebraic l a t t i c e and l e t u:L<—# Ii be an m-algebraic 

closure operator. Then a* u(Ii) i s m-compaet in (u (L) | ^ ) i f f 

a * u(c) for some element c m-compact in oC. 

Proof follows immediately from Theorems 2 . 1 , 2.4 and 

Lemma 2 .5 . 

H e f e r e n e e s 
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