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ON m-AIGEBRAIC CLOSURES OF n-COMPACT ELEMENTS *)
Jana RYSLINKOVK, Praha

Abstract: Iet m,n be arbitrary cardinals and let u be
an m-algebraic closure operator on a complete lattice. This
paper answers the following question: does u preserve the n-
compacticity?

Ke¥ words: n-compact element, m-directed set, m-alge-
braic eclosure operator, m-algebraic closure system.

AMS: 06A23

Introduction. The authors of the paper [3] prove that
every algebraic closure operator on a complete lattice preser-
ves the compacticity. A natural question arises: Does it pre-
serve also the m-compacticity for any infinite cardinal m ?
This paﬁer will answer this question.

Part 1 contains only definitions and some lemmas used in
part 2. A closure operator on a complete lattice is called m-
algebraic, if it preserves the joins of m-directed subsets.
Theorem 2,1 shows that if m£&n, then

- if m is regular, then the m-algebraic closure of any
n-compact element is n-compact,

- if m is irregular, then the m-algebraic closure of any
n-compact element is max{m+,n§-compact.

Example 2.3 shows that the estimate of the compacticity

- - o -

x) This paper has originated at the seminar Algebraic Founda-
tions of Quantum Theories. directed by Prof. Ji¥{ Fébera.
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for irregular m cannot be improved. Further, in an m-algeb-
raic lattice & (where m is regular), an element is m-com-
pact in ¥, iff its m-algebraic closure is m-compact in the
closure of & .

In the whole paper, & = (L;& ) will denote a given com-
plete lattice. If A€ L, then A will denote the poset (A;£).
Further, m and n denote infinite cardinals.

I wish to thank my colleague dr. Tgo Sturm for his nu-
merous remarks and encouragement which helped me to carry

out this work.

1. Preliminaries.

1.1, Definition: ILet m be an infinite cardinal and let
£ = (L; £) be a complete lattice., We shall say that cel is
m-comm ct in & y if for every XE£ L such that eéaupt X, there
exists Y& X the cardinality of which is strictly smaller than
m and such that cé£ supp Y.

1.2, Definition: A subset X of L is called m-directed
in %, if every subset Y of X such that | Yl<m has an upper
bound in X (where | Y| means the cardinality of Y); more ex-
actly:

(VYSX)(IYl<m=> (IxeX)(VyeY) yé&x).

1.3. Definition: We shall say that a maoping u:L—> L
is an m-algebraic closure operator in & ir

1) u is a closure operator in &

2) for every m-directed subset X of L there is

u(supi X) = supxu(x).

1.4. Definition: We shall say that A® L is an m-algeb-
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raic closure system in & if

1) A is a closure system in &

2) for every m-directed subset X of A it holds supy X=
= sup(A;‘)x.

1.5. Remark: a) If we set m = K in the preeeding
definitioms 1.1 ~ 1.4, we obtain the usual notions of a com-
pact element, a directed set, an algebraic closure operator

or an algebraic closure system, respectively.

1.6, Lemma: (A generalization of Ward's Lemma) Iet
w:L—L be a closure operator on & . Then for every XEL it
holds:

u(supz X) = SUP (. (1) ;‘)u(x).

Proof: Denote by A the psset (u(L); £). Then we have
sup&ux& u(supfl X), since for every xe X, it is u(x) &
£ u(supg X) and u(supy, X) e u(L) is an upper bound of u(X)
in A . Let for some y 6 L, u(y) be an upper bound of u(X).
Then u(y) is also an upper bound of X, since for every x€ X
there is x4 u(x)&u(y). Therefore, u(y)z supy X, which imp~-
lies u(y)?:u(sup£ X), i.e., ulsupy X) is the least upper
bound of u(X) in A .

It is known that u:L-—» L is a closure operator iff
u(L) is a closure sy;tem in & .
The following lemma shows that there is the same correspon-
dence between m-algebraic closure operators and m-algebraic

closure systems on & ¢

1.7. Lemma: Let u:L—> L be a closure cperatcr. Then,
for every infinite cardinal m, the following conditions are

equivalent:
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(1) u is an m-algebraic closure operator on & j§
(2) u(L) is an m-algebraic closure system in &£ .
Proof: Denote by A the comple te lattice (u(L);£).
Suppose that (1) holds and take any m-directed subset X of
u(L). Since every element of X is closed, we have
sup, X = sup, u(X).
Further, by lemma 1.6
sup gy u(X) = u(supy X)
and by assumptiom (1) we obtainm
u(supz X) = supzu(x) = sup,, X.
These equalities prove that u(L) is an m-algebraic closure
system in & . Now, suppose that (2) holds and take any m=-di-
rected subset X of L. It is easy to prove that u(X)E€ u(L) is
m-directéd, too. Then we have, by the assumption,
euptu(x) = supy u(X)
and by lemma 1.6
eupdu(x) = u(supy X).

These equalities show that u is m-algebraic.
1.8. lemmg: let m be a regular infinite cardinal and
let X be a subset of L. Then
X*ﬁ{mp*’Y; YeXet 1Y emg

is m-directed and suptx“= sup, X.

Proof: Take any subset T of X¥ with the cardinality
strictly smaller than m. For every t& T take exactly one
YE X such that | Yle m and supy Ye T; denote by Z the union
of all such Y.

Since cardinal m is regular and {Zl< m, we have
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sup,, Ze X*,

Cle arly, supg‘z is an upper bound of T and so, X¥is m-direc-
ted.
I\'Iow, denote by & the set
X =4{YsX; supx)'ex“ JYlemy .
Then
supy X¥= supx-{ supaﬂY; YeXxt = sup, Ux = sup£X
which proves the second assertion of the lemma,

1.9. lemma: ILet m be "an irregular (infinite) cardimal
and X a subset of L. Then X is m-directed if and only if X is
m*-directed. (m+ is the cardinal successor of m.)

Proof: If X is m'-directed it is, of course, m-direct-
ed, too. Let us suppose that X is m~directed and Y is a sub-
set of X with the cardinality strictly smaller than m+, i.e.
| Y} ém, We have to prove that Y has an upper bound in X.

If | Y|< m, there is nothing to prove.

If (Y] = m, then there exists a family {Y;;ie If of sub-
sets of Y such that {|Ij<m, ¥ = {1 Ys and for every ie I,
llil = my< m. Since X is m-directed, we can choose an upper
bound X3 of Yi for every ie I.

Denote by Z the set of all such ¥;» Then

1Z1 &) Ilem, thus Z has an upper bound x € X. Clearly,

x ies an upper bound of Y.

2. m-aslgebraic closures of n-compact elements.

2.1, Theorem: ILet m, n be infinite cardinals such that
mé&n, If u:L—> L is an m-algebraic closure operator on a
complete lattice £ = (L; &) and if ¢ €L is an n-compact ek -

- T47 -



ment of § , then the following assertioms hold:
(i) if m is regular, then u(c) is n-compact in
(u(L); &);
(ii) if m is irregular, then u(c) is max {m",n}-compact
in (u(l); ¢).
Proof: 1let us denote by A the complete lattice (u(L ;&)
and by % the smallest regular cardinal « such that m<£
& & . (I.e. if m is regular, then ™ = m, and, for irregular
m, ¥=n".)
Iet X be a subset of u(L) such that u(c)l-sup‘e X. Put

X¥ = {aupr; |Yle@et YS X3,

Then by Lemmas 1.6 and 1.8 we have supg uX* = sup, X. Furt-
her, u(l) is an m-algebraic closure system and the set ux*

is m-directed by ILemma 1.9; hence we obtain
(1) sup, ux¥ = sup, X*,
The mapping u:L—» L is a closure operator, thus
(2) céu(c)é supy X
and so, by (1) and (2) we obtein
cé supy ux”®,
The element x is,by the assumption, n-compact (where mgn),
i.e. there exists a subset Z of uX™ the cardinality of which
is strictly smaller than n and such that
ck suny, Z.
Therefore

u(c)#é u(supx Z) = sup, Z.

For every 26 Z choose exactly one Y& X such that mp"Y =z
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and | Y|< . The set of all such Y will be denoted by ¥
Then, for X' = UZ&X it holds:

u(e)é supy Z = sup‘_{ supy Y;Y.}j’ = sup_p U;, = supy X,
Mcreover, [Z.14|Z]<n and X1 = Iyl .
Ye

(i) If m is regular, we have ™= m and

- for m<n, yﬁ‘!lénr‘}|<n ’

- form = n, y? Y€« m = n by the regularity of m.
This proves assertion (i) of the theorem.
(ii) If m is irregular, we have @=n'> m and
- for m«n, there is n'é n, and
F. 1¥[ém.13) < n= nax{fn’,nj,
- for m = n, there is m* > n and
y%lrla m.ls,l< n* = mex{m’,n}.

This proves assertion (ii) of the theorem.

2.2, Example : For regular cardinal m, the assumption
mé&n in Theorem 2.1 (i) camot be omitted as shown by the
following example: Put m = #, (then m is reguler), n = &,
and let N denote the set of all non-negative integers, L =
=Rviaw,w +1jvd c}, where c #s ah arbitrary element
which does not belong to Nu{ao,wo + 13 and define an or-
dering on L as follows: the set Ny {‘”o""o + 1% is ordered
by the usual ordering and for 'any x, ye€ L, xcgy, there is

xkc iff x = 0, and cky iff y = @, + 1. (See Fig.l.)

*\Go+1 Further, put A = L\ {@}. Then A is an
/\ ¥ ,-algebraic closure system in =
) [ X4
= (L; £), since $4;-directed subsets of

A zre exactly those sets X€A, which sa-

tisfy the ccndition
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supy X6 X,

and so, for any J#;-directed set XEA there is
sup%X = supﬂ X.
(Here, A = (A; &).)
(Note that A is not an # -algebraic closure system:
e.g. N is directed, but sup&N = W kW, t 1= supﬁN.)
Denote by u the xl-algebraic closure operator corres-
ponding to A. Then z(c) = ¢ and ¢ is compact in & but it

is not compact im A :

c&supy N @, + 1,
but for any finite subset X of N, sup, X& N, i.e. sup.q_x is

either incomparable with c or strictly smaller than c.

The following example shows that the estimate in as-

sertiom (ii) of Theorem 2,1 cannot be improved:

2.3. Example: ILet m be any infinite irregular cardi-
nal. Then there exists a complete lattice €= (L; <), an
m-algebraic closure operator u:L—>L and an element be L,
m-compact in & , which is not m-compact inm (u(L); £). Of
course, it is m'-compaet in (u(L); £) by Theorem 2.1.

Let us construct the set L: since the cardinal m is in-
finite and irregular, there exists a limit ordinal « such
that m = &, . Denote by I the set of all ordinals A3 < &
such that '“"ﬂ is regular. This set is not empty, since‘

@ ,& I. Take a family of posets {(B such that

p i %a%er
the ordinal type -* (sti éﬁ) i B and if 3, 6 I,
# * 9 , then Bsn B = P, On the other hand, take a set
M,with | M| = m and such that exp Man = @ for every f3¢ I.

Further, take two different elements b, 1 such that
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1 =
b#L‘JIBﬂUexpM,_#PL‘{IBpuexpMandputL nL{IBu
b} U exp M uL1l}. The ordering on L will be defined as follows:

let B = (ﬁ%:l 3/5 Y® $b3, €= (exp M - {P};¢).
Then
g ={83® (R+€) D113,

where @ denotes the ordinal sum and = or + the cardinal one.
(See Fig.2.) o1

3 5—/ \ .

3
o}

‘s
Fig.2.
It is easy to prove that & is a complete lattice. Put
A=1L-{b,M}.
Then A is an m-algebraic closure system in & : Take any m~
directed subset TEA. We shall prove that supyT = supgy T
(i.e. supy TgA).
Suppose the contrary, supy, T§A. Then either supeT = b
or su.pl'l‘ = M.
1) Suppose supy T = b. Then necessarily T€B. If there
exists { ¢ I such that TE€B; , then IT1 &l Byl =4<;,‘~“‘..-, =
= m. Since T is m-directed, then suppT = b6 T - a contra-

diction, becsuse we have supposed T§A = L -{b M}, If there
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exist at least two different elements B of I such that
t,€TABp, t,& TNBy; then l{tl,tzi‘l = 2< m, but only b and
1 are upper bounds of this subset - a contradiction again,

2) Suppose supzT = M, Then T must be a subset of
exp M, i.e. supx’r = UT = M, Since the cardinality of M is
m (recall m is irregular), we can write M =.¢5}K M, where

Kl<m and M V<m for every keK. We have

UT = NM -"—h'L.)Kllk.

Thus, for every k€K, there exists a subset T, €T such that
(T l< = and M, SUT,. Since T is m-directed, there exists
X, € T such that UT, X, . Put £={X ;keKf. Then |%|< m,
% & T and therefore, ¥ must have an upper bound in T, say
X; a contradiction to M = X€T. Hence we have preved that A
is an m-algebraic closure system.

Similarly, one can prove that b is m-compact in &€ . (But
it is not n-compact in & for any n¢ m: lLet (S & I be an or-
dinal such that n & "‘p" ¥y - Then supg B(; = b, but no co-
final subset of B has the cardinality smaller than n.)

Denoting by u the m-algebraic closure operator corres-
pording to A, we get u(b) = 1 and 1 is not m-compact in R :
for example, consider the set M ={{x};xeM}. M £ A and
supdm = 1. Further, the join of every proper subset&§ M
is a proper subset of M and thus it is different from 1.

This completes the proof.

Theorem 2.1 characterizes m-algebraic closures of n-
comoact elements for some cardinals m, n. In some lattices
we cnn characterize all n-compact elements of a closure sys~

tem, as shown by the following theorems.
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2.4. Theorem: Iet u:L —% Lbe a closure operator on i
and P4 CEL be a join-m-subsemilattice of & which genera-
tes L by joins, If beu(L) is an n-compact element in
(u(L);£) for some ném, then there exists ce C such that
b = u(e).

Proaf: Denote by & the lattice (u(L); &). There ex-
ists a set B& C such that b = Supy B, i.e.

bgu(b) = u(supt B) = supy u(B)
(for the latest equality use Lemma 1.6). Suppcs e that b is
n-compact in A ; we get B’E B such that |B’l< n and
(4) b4 sup 4 uB’.

Put ¢ = sup$B'. Then ce¢ C because n<m and C is, by the
assumption, a| join-m-subsemilattice, thus (4) expresses the
same as

(5) b4u(e).
On the other hand, we have
c = supr'g. sup,, B=b
and therefore,
(6) u(e) & u(b) = b,
Inequalities (5) and (6) prove the theorem.

2,5, lemma: If m is a regular cardinal, then the set
C of all m-compact elements of & is a join-m-subsemilattice.

Proof: Take any X=C wiith the cardinality strictly
smaller than m and denote by a its supremum n & ., We shall
prove that a is m-compact, i.e. a&C.

Let aésupt Y where Y& L. Then for every xe X, x& sup‘Y

and since X is a subset of C, then for everv x¢ X, there ex-
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ists !xs Y such that [!xl<m and xg& eupt !x’ Put
Z = U{Y ;xeX}.

By the regularity of m, we have | Z|< m and, obviously,
ag supy z.

2,6. Corollary: let m be a regulsr cardinal, let &
be an m-algebraic lattice and let u:L —~» L be an m-algebraic
closure operator. Then a6 u(L) is m-compact in (u(L);& ) iff
a = u(c) for some element ¢ m-compact in €.

Proof follows immediately from Theorems 2.1, 2.4 and
Lemma 2.5.
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