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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

19,3 (1978)

COMPIETION AS REFLECTION

H.L. BENTLEY and H. HERRLICH

Abstract: Completeness is known to be reflective in
the category of uniform Tl—spacee and in the larger cate-

gory of regular nearness Tl—spaces. In this paper the even
larger category SepNear of separated nearness Tl-spaces is

investigated. It is shown that SepNear is epireflective in
Near and that completeness is re?gecflve in SepNear. As op-
posed to the uniform and regular case, the comple te reflec-
tion in the separated case is not the strict completion but
is the simple completion, introduced in this paper. The
strict completion can still be regarded as a complete re-
flection, if attention is restricted to those maps which
have uniformly continuous extensions to the strict comple-
tions. These maps are characterized internally. As an appli-
cation, a characterization is given of those maps between
Hausdorff topological spaces, which can be continuously ex-
tended to the Katétov - resp. Fomin-H-closed extensions.

Key words: Completeness; strict and simple comple tion;
uniform spaces; separated nearness spaces; reflective sub-
categories; H-closed extensions; (uniformly) continuous ex-
tensions of maps.

AMS: 54E15, 54D35

Introduction and summary. As is well-known, every uni-

form space can be densely embedded into a comple te uniform
space and - if attention is restricted to separated uni-
form spaces - this completion can be considered as an epi-
reflection. The concept of uniform spaces has been genere-
lized to that of nearness spaces in order to include all

symmetric topological spaces, and it has been shown that
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every nearness space X can be strictly embedded into a com-
plete nearness space X¥ , called its strict completion. The
question, whether this completion can be considered as an
epirefle ction, has found a positive answer for regular
nearnesa spaces (Morita [23], Herrlich [16], see also Stei-
ner and Steiner [29]). In this paper, the following two
questions will be answered:

(A) Do the complete, separated nearness spaces form
an epireflective subcategory of the category of all separa-
ted nearness spaces?

(B) Can the strict completion X —> X* be regarded as
an epireflection for separated nearness spaces?

Surprisingly, the answer to (A) is yes and the answer
to (B) is no and yes. A proper understanding of these ques-
tions requires a careful analysis of separated nearness spa-
ces first.

In § 1, we will show that the concept of separated
nearness spaces has the following properties:

(1) Every regular (and hence in particular every uni-
form) nearness space is separated.

(2) A topological space is Hausdorff iff it is sepa-
rated as a nearness space:.

(3) Separatedness is productive and hereditary; hen-
ce the separated nearness spaces form an epireflective sub-
category of all nearness spaces,

(4) Separatedness is preserved by the strict comple-
tion.

(5) Separatedness is preserved by the topological co-
reflection, i.e. the underlying topological space of a se-

- 542 -



parated nearness space is always Hausdorff.

In § 2, we give a positive answer to the above Prob-
lem (A) and provide a concrete description of the complete
.reflection X —> f of a separated nearness space X, which
will be called the simple completion of X.

Since the simple completion behaves rather badly in
so far as it destroys any of the properties "uniform”, "re-
gular", "contigual”, "proximal", whereas the strict exten-
sion preserves all of them, we investigate in § 3 the que-
stion whether the strict completion can be regarded as ®
reflection in some modified category. The answer is yes,
if we restrict our attention to the category.of all sepa-
rated nearness spaces and those maps f£:X—> Y which have
a uniformly continuous ( = nearness preserving) extension
£* :X* —> Y¥ t0 the strict completions. We characterize
these "extendable" maps and show, in particular, that uni-
formly continuous maps f£:X—> Y are extendable provided
any of the following conditions hold:

(1) X is complete.

(2) Y is regular.

(3) f is a projection.

As an application of the above results, in § 4 we cha-
racterize those maps between Hausdorff topological spaces
which can be extended continuously to the Kat&tov or the
Fomin H-closed extensions.

In this paper, all spaces (nearness or topological or

uniform) are supposed to be T,-spaces.
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0. Background. A nearness space X is a pair consist-
ing of a set - called the underlying set of X amnd, par abu-

se de language, usually also denoted by X - and a non-empty
collection of non-empty covers of the set X - called uniform
covers of X - satisfying the following axioms:

(1) Any cover of X refined by some uniform cover of
X is itself uniform.

(2) Any two uniform covers (X and & of X have a com-
mon uniform refinement.

(3) If L is a uniform cover of X, then so is
inty = {int A |A ¢ (X} , where xe intyh iff {X - { x}, A}
is a uniform cover of X.

The operator intx defines a topology on the set X.
The corresponding topological space is called the underly-
ing topological space of X and all topologica.l terms (open
sets, adherence points, etc.) in a nearness space refer to
this topology. In this paper, we restrict our attention to
those nearness spaces X, whose underlying topological space
is a T,-space (equivalently: such that {X - {x3%, X - {y33}
is a uniform cover of X for any two different points x and
y of X). A map f:X—> Y between nearness spaces is called
uniformly continuous, provided the f-preimage f-ICIL =
={¢1 A| A e L} of any uniform cover (f of Y is a uni-
form cover of X. The category of nearness spaces and uni-
formly continuous maps will be denoted by Near.

A collection O of subsets of a nearness space X is

called near_in X provided any uniform cover contains a mem-

ber which meets every member of ¢ (equivalently: if

'
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4X - A] A e L} is not a uniform cover of X). Every col-
lection with an adherence point is near in X, but general-
ly not vice versa. A collection of subsets of X, which is
not near in X, is called far in X. A collection L of sub-
gets of X is called micromeric in X provided that for any
uniform cover & of X there exists A € f and B € & with
Ac B. A micromeric filter is called a Cauchy filter. Every
convergent filter is a Cauchy filter, but generally not
vice versa. It can be seen easily that a collection O of
subsets of X is near (resp. micromeric) in X iff the col-
lection

sec X ={BcX|BAAs ¢ for all Aect}

is micromeric (resp. near) in X. If a collection (f corefi-

nes &r , i.e. iffX ~-A|A e (L} refinesfX -B|B & %3,

and ¢ is micromeric (resp. & is near), then ¥ is micro-
meric (resp. (¥ is near). A map between nearness spaces is
uniformly continuous iff it preserves near collections
(equivalently: iff it preserves micromeric collections).

For any nearness space X, the maximal elements of the
set of all non-empty near coéllections in X, ordered by in=-
clusion, are called clusters in X. Every cluster <L is a
rill, i.e. satisfies

AUBet iff (Ae(t orBe & ).

Every near grill in X is micromeric in X. A nearness space
X is called complete provided every cluster has an adheren-
ce point in X. Every nearness space can be densely embed-
ded into some complete nearness space, The embedding e:

:X—> X¥ | described below, is called the gtrict completion
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of X. The underlying set of X* consists of all clusters in
X. The function e:X—> X* maps every x€ X onto the cluster
consisting of all those subsets of X which have x as an ad-
herence point. For any subset B of X, the set B* denotes
the set of all pe X* such that B meets every member of the
cluster p. A cover (! of X¥ is called uniform provided the-
re exists a uniform cover & of X such that {B* | B ¢ &}
refines 00 .

A nearness space X is called uniform (or a uniform spa-
ce) provided every uniform cover of X has a uniform star-
refinement. For uniform spaces, the above concepts corres-
pond with the familiar uniform concepts. In particular, e:
:X—> X* is the usual completion of a uniform space. A
nearness space X is called regular provided, for every uni-

form cover (L of X, the collection

{ch[B<xA for some A & (L }

is also & uniform cover of X, where B <y A means that

{A,X - B} is a uniform cover of X. Every uniform space is
regular. For the categories Unif resp. Reg of uniform resp.
regular nearness spaces and uniformly continuous maps, the
strict completion can be characterized as complete (epi)
reflections. A nearness space X is called topological provi-
ded every open cover of X is uniform. Every topological
nearness space is complete. We will identify every topolo-
gical (Tl—) space X with the topological nearness space X
whose uniform covers are precisely the interior covers of

X, i.e. those covers which can be refined by some open co-
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ver of X. (This provides, in fact, an isomorphism between
the category of all topological (Tl— ) spaces and continu-
ous maps and of all topological nearness spaces and uniform-

ly continuous maps.)

1. Separated nearness spaces. We study here the ca-

tegory SeplNear of separated nearness spaces. Unfortunately,
the definition of senarated nearness spaces is technically
unappealing, but if only the reader can survive reading it,
we expect that he will be pleasantly rewsrded by seeing so-
me of the nice properties of the category SepNear.

1.1 Definition. A nearness space X is called gepa-
rated provided that whenever a collection L is both near
and micromeric then{Gc X |4G3u (X is near in X} is near
in X. The full subcategory of Near whose objects are the

separated nearness spaces is denoted by SepNear.

The next four results appear in the papers Herrlich
[17] and Bentley and Herrlich [4]; also, in the former pa-

per, Theorem 1.6 below was incorrectly stated to be false.

1.2 Proposition. A topological space is Hausdorff
iff it is separated as a nearness space. Moreover, the un-
derlying topological space of a separated nearness space is

Hausdorff.

1.3 Proposition., Every regular nearness space is se-

parated. Hence, every uniform space is separated.

1.4 Theorem., A nearness space X is separated iff its

strict completion X* is separated.
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1.5 Proposition. SepNear is hereditary in Near.
I.e. any nearness subspace of a separated nearness space

is separated.
1.6 Theorem. SepNear is productive in Near.

Proof: Let (X;);. 1 be a family of separated nearness
spaces and let X = &TII X; be their product in Near with
(pi:‘x-—-r xi)ieI the projections. Let (f be a collection

which is both near and micromeric in X. To prove that
& ={BcX|{B} U L is near in X3}

is near in X, let 9% be a uniform cover of X. Then there
exist a finite subset J of I and, for each je J, & uniform

cover Qlj of XJ. such that X)
-1 .
p: WU refines W .
PIASRE I

For each i e I the collection pi(/L is toth near and micro-
meric in xi, hence - by separatedness of X; - the collec-

tion

&, ={BcX;|4B3up;  is near in X}

is near in Xi. Consequently, for each je€J, there exists a
U, € "ULJ meeting each member of Sﬂfd. This implies that,

3
for each jeJ, X; - Us & i, hence pgl(x- -U) & &

J J

x) If ( O'Lj)j‘J is a family of collections of subsets of
X then

309 %5 0y 45145 € iyl
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Since & is a grill, no subset of

’ “ly _ —x -1
59 P5 X - Uy) =X =y p5 Uy

belongs to & , i.e. every member of - meets
-1

3&9Ps U5

If U is an element of U with
MN.ptu.cU

2ed d
then U meets every member of & . Consequently, & is near
in X,

The above proof works not only for products but for any
initial (mono-) source (pi’x"’xi)iel in Near. In particu-
lar, it provides a proof for 1.5 too.

1.7 Corollary.

(1) SepNear is an epireflective subcategory of Near.

(2) SepNear is complete and cocomplete.

(3) The forgetful functor SepNear —» Set is (onto, mo-

no source)-topological.

1.8 Proposition. In SepNear, the monomorphisms are
precisely those uniformly continuous maps which are injec-
tive and the epimorphisms are precisely those uniformly con-

tinuous maps £:X—> Y for which fX is dense in Y.

1.9 Corollary. SepNear is well-powered and cowell-

powered.
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2. The complete reflection. Herein appear our main

results concerning the epireflective nature of completeness

in the category SepNear.

2.1 Proposition. For a nearness space X, the follow-
ing conditions are equivalent: '

(1) X is complete and separated.

(2) Any collection, which is near and micromeric in

X, has a unique adherence point in X.

Proof: (1)—>» (2). If (L is near and micromeric in X,

then by separatedress,
 ={BcX|{B}u (L is near in X }

is a cluster in X. By completeness, & and hence (! has an
adherence point. If x and y are adherence points ef CL ,then
the sets §x§ and {y} belong to & , which implies x = y.
(2) —> (1). Since every cluster is near and microme-
ric, (2) implies completenéas of X. Next, let (0 be near
and micromeric in X, let x be the unique adherence point of

L , and let
£ =4{BcX|{B} u X 4is near in X3 .

To show that % is near, it suffices to show that x is an

adherence point of every B € & , If this were not true for
some B € & , then the micromeric collection (fu £B3 would
have no adherence point, &nd hence by (2) could not be near

in X, in contradiction to the definition of & .

2,2 Corollary. ([17)) For a separated nearness space

X, the following conditioms are equivalent:
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(1) X is complete.
- (2) Every near grill has an (unique) adherence point.
(3) Every Cauchy filter converges to a (unique)

point in X,
2.3 Theorem. Completeness in SepNear is productive.

Proof: Let (X,); ;1 be a family of complete, separat-
ed nearness 8Spaces and let X =»L.Q-I X.i be their product in
Near with (p;:X—> xi)ieI the projections, Let (L be a Cau-
chy filter in X, Then, for each ieI, p;# is a Cauchy
filter in X; and converges by 2.2 to some point x4+ Conse-
quently Of converges to x = (x3)5.7» which by 2.2 implies
completeness of X.

We remark here that completeness is productive even

in Near, but to prove that would require a big digression.

2.4 Proposition. Completeness is closed ~ heredita-
ry in SepNear.

2.5 Corollary. Completeness is epireflective in
SepNear.

2.6 Remark., Since every separated nearness space can

be densely embedded into a complete separated nearness spa-

ce (see 1.4), the epireflection maps are dense embeddings.

Our next objective is an internal description of the

complete reflection of a given separated nearness space.

2,7 Definition. The simple completion e:X—> X of a
nearness space X is defined as follows:

(1) X is the set of all clusters in X,

(2) e:X—> X is defined by e(x) ={Acx\x501xA7:.
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(3) A cover (L of X is uniform iff it satisfies the
following two conditioms:

(a) el  is a uniform cover of X,

(b) for each pe'i' there exists A e (I such that pehA

1

and e”~ A meets each member of the cluster p.

Any completion of X, which is isomorphic to e:X —» 'i’,
will be called a simple completion of X.

2.8 Remarks. It can be seen easily that X is a comp-
lete nearness space and e:X—> X is a dense embedding in
Near, i.e. e:X — X is a completion. Moreover, the following
hold:

(1) eX is open in i’,

(2) each point of X - eX is isolated in ¥ - eX,

(3) pe intg A if peA and e 1A meets every member of
the cluster p.

(4) peClyA iff (ped or elAep).

(5) & is near in X if L has an adherence point in X
or e~k is near in X.

~
%) 50 ¥ or

(6) (& is micromeric in X iff & converges
{BcX|eB & (X 3 is micromeric in X.
(1) 4 is a uniform cover of X iff Of is an interior

cover of ¥ and e1(¢f is a uniform cover of X.

2.9 Theorem. If X is separated, so is its simple com-

. ~
pletion X.

x) (L converges to p in % ire every neighborhood of p in 54
contains some member of L . ‘
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Proof: Before showing that X is separated, we first
show that the underlying topological space of X is Haus-
dorff. let p, q€ X with p#q and let

4 ={GcX| G meets every member of p3,

Then (4« is near and micromeric in X so, since ¢} is contain-
ed in the cluster p, it camot be contained in q. let G &
€0l -qand let H =X - G. Then fp} U eG and {q3 U eH are
disjoint neighborhoods of p and q respectively.

Now, let (f be near ani micromeric in . By 2.1, it is
sufficient to show that (I has a unique adherence point in X.

Consider first the case in which (£ converges in X. Sin-
ce the underlying topological space of X is Hausdorff, o
can have at most one adherence point. Suppose that Of does
not have an adherence point. Then e'J‘OZ is near in X, But

e'l(/L is also micromeric in X so
p={BcXx|{Bjuel(t is rear in X3}

is a cluster in X. Clearly, p is an adherence point of ¢ ,

which is a contradiction.

Next, consider the case in which (f does not converge
in X. Then
r={BcX|eB e L3
is micromeric in X. But & is also rear in X so
p=4{EcX|{Eju ) is near in X3

is a cluster in X. In order to show that p is an adherence

point of 04 , let A € U and suppose that p 4 Cly A. Then
el A¢p and so el A3 0 % is far in X. Since ¥c 3'10&,
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then e"1t = {e7l A3u e 10t must also be far in X. But
then (! must have some adherence point q in X. Since efrc
c ¢ , then it must be that & c q. Consequently, p = q,
a contradiction. This same argument can be used to show that

the adherence point of (f is unique.

2,10 Theorem. If e:X—» Y is & separated completion,
then the following are equivalent:

(1) e:X—>Y is a complete reflection of X in SepNear.

(2) e:X—> Y is a simple completion of X.

(3) e:X~— Y is topologically a simple extension (i.e.,
if A is open in Y then so is any set B with (AneX)c BcA),
amd the following equivalent conditions hold:

(a) Every interior cover & of Y, such that ol is
a uniform cover of X, is a uniform cover of Y.

(b) If ¢ is near but has no adherence point in ¥, then
eldl  is near in X.

(¢) If & is micromeric but does not converge in ¥,

then{BcX|eB ¢ (13 is micromeric in X.

Proof: (1) <> (2) We need only to establish the ap-
propriate universal mapping property of the simple comple~
tiom e:X—-—)'i let Z be a complete, separated nearness space
and let £:X—> Z be & uniformly continuous map. Let g:i-—-) Z
be defined as followa: for each psi, since the cluster p is

near and micromeric, then 80" is the collection
fp =4{fA|Aepj.

Therefore, fp has a unique adherence point g(p) in Z. It is

easy to show that gee = £ and that g:?(’-—-# Z is uniformly
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continuous.

(2) «»> (3) is a simple exercise.

2.11 Remark. Even though, from a categorical point
of view, the simple comple tion of a separated nearness spa-
ce X - being its complete reflection in SepNear - is the
"nicest" completion of X, it is not so from a more concre-
te point of view, since it may destroy many nice properties

of X, as the following example demonstrates.

2.12 Example. Iet [0,1] be the closed unit interval
with its usual nearnes ( = uniform, = topological) structu-
re, and let X be the nearness subspace of [0,1] , determin~-
ed by the set [0,1) - { %— In=1,2,.0.% . Then X, as a sub-
space of a compact Hausdorff space, is proximal and hence
uniform, regular, and contigual. But the complete reflection
of X (which is nothing else but the simple topologiqal ex-
tension of the underlying topological space TX of X, deter~
mined by the same filter traces as the strict extemsion
[0,1] of TX) is neither proximal nor uniform nor regular
nor contigual. Moreover:

(1) X is never uniform or regular, unless it coinci-
des with the strict comple tion X* of X.

(2) X is never proximal or contigual unless i’ - eX
is finite,

2.13 Remark. Heldermann [13), [14] has studied the
category HausNear, the full subcategory of Near whose ob-
Jjects are those nearness spaces whose underlying topologi-

cal space is Hausdorff. That study was focused mainly on
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category theoretic properties of HausNear, e.g. & characte-
rization of epis and monos is given.

Carlson has introduced the conceépt of ultrafilter
complete nearness spaces ( = B-complete in [6]), i.e. tho-
se nearness spaces in which every near ult rafilter has an
adherence point, and has shown [ 7] that ultrafilter comple-
te spaces form an epireflective subcategory of HausNear.
Although for separated spaces, the concepts complete and
ultrafilter complete coincide, (Proof: It follows from
(1) — (2) of 2.2 that complete implies ultrafilter comple-
te., Suppose X is ultrafilter complete and let (I be a clus-
ter on X. Let ¢l be the collection of all subsets of X
which meet every member of (! . Then q, is & near amd Cau-
chy filter in X. Consequently, (I consists of precisely tho-
se subsets A of X for which {A} U & is near in X. Let %
be an ultrafilter with ¢4 ¢ % . Then % is a Cauchy fil-
ter, hence U is near. Therefore, 2% has an adherence point
x which must also be an adherence point of q’ . Consequent-
ly,4x% €« ! and so x is an adherence point of (£ . There-
fore, X is complete.), his ultrafilter completion X—» X’
is, in general, different from our simple completion X—> X.
In particular, X'need be neither complete nor separated.
(Example: Let X be the nearness subspace of [0,1] determin-
ed by the set{% |n=1,2,...% . Then X* is neither comple-

te nor separated.)

3. The strict completion as reflection. The strict

comple tion preserves the properties separated, regular,
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uniform, contigual, proximal and it preserves the dimen-
sion. Hence it is natural to ask whether, for separated
spaces, it can be regarded as a reflection in some sensib-

le way.

3.1 Definition. A uniformly continuous map f:X—> Y
between nearness spaces X and Y is called extendible pro-
vided there exists a uniformly continuous map g:X¥ — Y*
between the strict completions of X and Y for which the

diagram

commutes, where X—> X* and Y—> Y* are the strict comp-

letions of X and Y respectively.

3.2 Proposition. The strict completion is the comp-
lete reflection in the category of separated nearness spa-

ces and extendible maps.
Proof: See Porter [24] .

3.3 Proposition. ILet f:X—> Y be a uniformly conti-
nuous map between separated nearness spaces X and Y. Then
the following are equivalent:

(1) f£:X—> Y is exteniible.

(2) If & is far in Y then there exists ¢ far in X
such that for each A € (X there exists some B & & such
that the following condition.holds: whenever C} is a clus-
ter in X with4A3 0 ¢ far in X then{Bju £f¢f is far in
Y.
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(3) If ¥ is far in Y then there exists (¢ far in X
such that for each A € (! there exists some B &€ & such
that the following condition holds: whenever QL is btoth near
and micromeric in X with {A3 U ¢f far in X then 4Bjuf L

is far in Y.

Proof: (1)—> (2). let g:X* —» Y* be -uniformly con-
tinuous with goey = eyo f where ey:X—> X¥ and ey: YT — *
are the strict comple tions of X and Y respectively. Let s
be far in Y. Then r‘lclz,. ey & is far in x* ., So, by con-

struction of X*,
A ={AcX| for some Heg ™t Clyx ey & . , HcClyyepAd

is far in X. For each A & (0 there exists Be # with
g 1C1yx egBCClyy oyA. let @ be @ cluster in X with A3 U
“ ¢ far in X. Then A & 4 s0 (f & Clyy eyA and thus
g(g,)t Clyx eyB which implies that Bé g(Q). As is easily
shown, ¢ c g(¢) and, since £¢L is both near and microme-
ric in Y
g(}) ={BcY|{B}urf(} is near in Y3.

So,-(B}ufq, is far in Y.

(2) = (3). Let @& be far in Y and choose CL as in (2).
Let Ae (L and et B € ¥ so that the condition in (2)

holds, let QL be both near and micromeric in X with {A3 v
v far in X. let

074 =-iHcX| {}{%ucg, is near in X 3§ ,

Then ¥ is a cluster in X and {A3 v 3 is far in X. So,
{Bi ur¥ is far in Y. Let
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A =4{DcY|4{D}uL QL is near in Y3
and
W={UcY|{4UsurFH is near inY3.

Since f(} c £ and toth of these are both near and micro-
meric in Y, then 4% =% . So,4B}u £ is far in Y,

(3)—> (2) is obvious because every cluster is both
near and micromeric.

(2)— (1). Let g:X*_—» Y* be defined by
g((})‘ ={BcY|{B}u £¢l is mear in Y3}

for each ¢Le X* . Since £ is near and micromeric in Y,
g(¢)) is a cluster in Y. If xeX, then the continuity of
f:X—> Y guarantees that fey(x)c ex(f(x)) and sog(ey(x))=

= ey(f(x)). Therefore ge ey = eyof. To show that g:X¥_» Y*

is uniformly continuous, let 4% be far in Y* and let

dr =4{BcY|for some D e % , DcClyyeyB3 .

Then ¥ is far in Y so there exists (£ far in X with the
conditions in (2) satisfied. It is sufficient to show that
Clyx ex X corefines g l1% . To that end, let A ¢ L and
choose B € £ 80 that the condition in (2) is satisfied.
There exists D e 2% with DcClyx eyB. We shall show that
g7 1DcClyx efA. So, let e g71D. Ten Beg(Qh) which imp-
lies that {B%3 v £ is near in Y. The condition in (2) then
implies that {A% u ¢} is near in X. So, A € ¢4 amnl thus
Qe Clyy exh.

Harris [13;; defined a concept which he called WO-map

in order to make the Wallmaﬁ compactification a functor.
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Bentley and Naimpally [5) generalized Harris’ concept in
order to make the Wallman-type compactifications of Steiner
[28] a functor. The characterization of extendible maps gi-
ven in the preceding proposition, although not a generali-
zation of the WO-map concept, is a generalization of a
8light variation of the WO-map concept. Maps satisfying
condition (2) of Proposition 3.3 were investigated by Bent-

3.4 Proposition. Let f:X—> Y be a uniformly conti-
nuous map between separated nearness spaces X and Y. Then

(1) If X is complete then £:X—> Y is extendible.

(2) If Y is regular then f:X—>Y is extendible.

(3) If X is a product and £:X—> Y is a canonical pro-

Jjection then £:X—> Y is extendible.

Proof: (1) is obvious and (2) is known (see Morita
{231 and Herrlich [16]). In order to prove (3), let X, and
X2 be separated nearness spaces and let

R

be their product in Near with £ = P;. (This is general
enough since we can write =,Tr, X.. t

‘ X PLEES ) We shall show tha
£: XX, —> X, is extendible by showing that (2) of Proposi-
tion 3.3 is true. Let & be far in Xl and let A = f'lir .
For each A € UL there exists B € 8 with A = f_lB. Ir
B =@ thenwe are through. So, suppose that B # ¢ . Let
& Dbe a cluster in Xy X, with 1A% v QL far in X. Then
there exist %, #, far in X,, X, respectively for
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which X)
1 v pEl 4, corefines fAYU )
Since ¢} is near in X;x X, then
1 Hqv p51'3€2 ¢q.
Consequently, there exist Hl € 761 ad HZ & 362 with

-1 -1
T Hup H £ 4.
Therefore Acf'lﬁlu pglﬂz anl, since A = 1 ¢ and

f"lﬁlu pgl‘HZ:#X, then we must have BcHl. We shall comple-~
te the proof by showing that

¥, corefines {Biu~?t g .

To that end, let B € arel and suppose that E contains neither
B nor a member of rq. . Then

Act™Eupy'H, or £l Ec pplH, e O

Since B¢E, it must be that e 1V p;lﬂze ¢ ami, since (f
is a grill, £ ' E e or p;Hye G} . £ upyH, ¢ in-
plies that p;lﬁz € g , s0 it must be that e 4 . But
then E = ££™ Ee T4 which is a contradiction.

3.5 Proposition. The category SepNear is productive
in SepNear, where SepNear derotes the object full subcate~
gory of SepNear whose morphisms are the extendible maps.

The Proposition 3.5 follows immediately from 3.4 and
the following Lemma.

x) If ) and &, are collections of subsets of a space,
then we write ) v O, =fAur]a ¢ %, and
A eX,3.
- 561 -



Lemma: Let (gi:!—? zi)iel be initial in SepNear and
suppose that £:X—> Y is uniformly continuous on the sepa-
rated nearness space X and that for all ieI, gje £:X—>2,
is extendible. Then £:X—> Y is extendible.

Proof: We apply Proposition 3.3. Let & be far in Y.
Then for some finite subset J of I and for some family

) : x)
(zej)jeJ wi th each 'Rj far in Zj, we have

éYJ 331 '365 corefines & .

Por each j€ J there exists OY,J- far in X such that for each
A e Otj there is H ¢ aej for which whenever q, is a clus-
ter in X with {A3 U ¢ far in X then {H}u (85 of)OL is
far in Zj' Let (X = »}\6/3 (/Lj. Then (¢ is far in X. let A €

e O ., For some family (Aj)jed’ with each Aj € (th, A=

= VJ A.. There exists a family (Hj)jeJ with each HJ- € 735
such that whenever ¢J is a cluster in X with fA;}u g far
in X then{ﬂj} V) (gjo £)¢} is far in Z;. There is B € &

with
Let (} be a cluster in X with {A} U ¢4 far in X. We must
show that £Bju £} is far in Y. For all jeJ, {453 v %2

is far in X 8o {Hj} v (gaaf)C} is far in ZJ and {galﬂ
ug g fg, is far in Y, Let 1% = .YJ({gllﬂ }u, gj g fq_).

- - - - > - -

x) If ((JLJ)J‘J is a family of collections of subsets of X
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Then 4% is far in ¥, and since 4% corefines {B3u t(} , we
are through.

3.6 Example, Segl‘lem:'e does not have equalizers.

Proof: Let
A = 4( 'x]'i , )| neN and -14y413%,
B = {(x,0) | 0£x£1}

and

C=4(2,y)|neN and Oky413 .

Let Z be the topological space on AUB whose topology is
generated by the usual topology plus A as a closed set. lLet
Y be the nearness subspace of Z on Bu C., Let X be the near-
ness subspace of Y on Y - (BAC), anl let W be the nearness
subspace of X on XA B,

Then the embedding W —» [ 0,131, (x,0) 2 x, and the
inclusion X—> Y are the strict comple tions of W and X
respectively (here [0,1] is taken with the usual topology).
The inclusion f:W—> X is a closed embedding but is not ex-
tendible (its unique pointwise continuous extension is not
continuous at 0). Let r,8:X—> Z be defined by taking r:
:X—>» Z to be the inclusion and s:X—>Z to be

s(x,y) = (x,-y).

Then r and s are extendible. Since f, being obviously the
only candidate for an equalizer of r and s in SepNear_, -is
not extendible, the pair (r,s) has no equalizer in SepNear,.

The following diagram illustrates the situation.
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0 000 PuarnnSmmmcn—r ® o0
»h

4. Applications to H-closed extensions., Harris [11]

calls an open cover (4 of a topological space X a p-cover
of X provided that the union of some finite subcollection

of q, is dense in X.

4.1 Definition. Associated with any Hausdorff topo-
logical space X is a nearness space HX on the same umier-
lying set as X and with its nearness structure defined by:
¢ is a uniform cover of HX iff (f is refined by some p=-
cover of X.

The nearness collections in HX are characterized by:

(X is near in HX iff (U has an adherence point in X or the-
re exists a maximal open filter on X each member of which
meets every member of (I .

The micromeric collections in HX are characterized by:
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(! is micromeric in HX iff (I converges in X or there ex-
ists a maximal open filter on X which corefines (£ .

Harris [11] calls a map f:X—>Y between topological
spaces & p-map iff the inverse image of a p-cover of Y is
a p-cover of X, This relates to our terminology as follows:
For a continuous map f:X—> Y between Hausdorff topologi-
cal spaces, f:X—> Y is a p-map iff f:HX—> HY is uniform-
ly continuous. Also according to Harris, a p-filter on a
topological space X is an open filter on X which is either
the open neighborhood system of & point or a maximal open
filter that does not converge.

Our preceding results immediately imply the following

three propositions.
4.2 Proposition. Let X be a Hausdorff topological

space. Then

(1) HX is a separated nearness space and X is the un~

derlying topological space of HX.
(2) The simple completion fiX of HX is the Katdtov ex-

tension of X.

(3) The strict completion (HX)* of HX is the Fomin
extension of X.

4,3 Proposition (Harris [11]): Let £:X—> Y be a con-
tinuous map between Hausdorff topological spaces. Then f is
extendible to the Kat&tov extensions of X amd Y iff £f:X—> Y
is a p-map.

4.4 Proposition. Let f:X—> Y be a continuous map

betwee n Hausdorff topological spaces. Then f:X—>Y is ex-
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tendible to the Fomin extensions of X and Y iff £:X—> Y is
a p-map and the following condition is satisfied: If ¥ is

a p~cover of Y then there is a p-cover Q} of X such that
for each G 6 (4 there exists H e 3 for which whenever n
and % sare p-filters on X and Y respectively with G € 24 and
H ¢ %) then there exist UeX and Ve % with ¥VafU = ¢ -

Proof: Use (1) > (3) of Proposition 3.3.

Remark: We have heard recently that a result similar
to 4.4 was known to D. Harris. As far as we know, this re-

sult is unpublished until now.
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