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COMMINTATIONIS MAШEMATICAI UNIIШЮITATIS OAROШNAI 

19,3 (1978) 

COMPЫTION AS HEF.ШCTION 

H.L. Ш N T Ш Г and H. Ш H H Ш Ш 

Abstracts Completeness is known to be reflective in 

the category of uniform T,-spaces and in the larger cate­

gory of regular nearness T-,-spaces. In this paper the even 

larger category SepNear of separated nearness T^-spaces is 

investigated. It is shown that SepNear is epireflective in 
Near and that completeness is reflective in SepNear. As op­
posed to the uniform and regular case, the compilete reflec­
tion in the separated case is not the strict completion but 
is the simple completion., introduced in this paper. The 
strict completion can still be regarded as a complete re­
flection, if attention is restricted to those maps which 
have uniformly continuous extensions to the strict comple­
tions. These maps are characterized internally. As an appli­
cation, a characterization is given of those mans between 
Hausdorff topological spaces, which can be continuously ex­
tended to the Katitov - resp. Pomin-H-closed extensions. 

Key words: Completeness; strict and simple completion; 
uniform spaces; separated nearness spaces; reflective sub­
categories; H-closed extensions; (uniformly) continuous ex­
tensions of maps. 

AMS: 54B15, 54D35 

Introduction and summary. As is well-known, every uni­

form space can be densely embedded into a complete uniform 

space and - if attention is restricted to separated uni­

form spaces - this completion can be considered as an epi-

reflection. The concept of uniform spaces has been genera­

lized to that of nearness spaces in order to include all 

symmetric topological spaces, and it has been shown that 

- 541 -



every nearness space X can be strictly embedded into a com­

plete nearness space X* , called its strict completion. The 

question, whether this completion can be considered as an 

epirefla ction, has found a positive answer for regular 

nearness spaces (Morita C2319 Herrlich [162, see also Stei-

ner and Steiner C291)• In this paper, the following two 

questions will be answered: 

(A) Do the complete, separated nearness spaces form 

an epirefleetive subcategory of the category of all separa­

ted nearness spaces? 

(B) Can the strict completion X — > X* be regarded as 

an epireflection for separated nearness spaces? 

Surprisingly, the answer to (A) is yes and the answer 

to (B) is no and yes. J. proper understanding of these ques­

tions requires a careful analysis of separated nearness spa­

ces first. 

In § 1, we will show that the concept of separated 

nearness spaces has the following properties; 

(1) Every regular (and hence in particular every uni­

form) nearness space is separated. 

(2) A topological space is Hausdorff iff it is sepa­

rated as a nearness * space* 

(3) Separatedness is productive and hereditary; hen­

ce the separated nearness spaces form an epireflective sub­

category of all nearness spaces. 

(4) Separatedness is preserved by the strict comple­

tion. 

(5) Separatedness is preserved by the topological co-

reflection, i.e. the underlying topological space of a se-
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parated nearness space is always Hausdorff, 

In § 2, we give a positive answer to the above Prob­

lem (A) and provide a concrete description of the complete 

.reflection X—-> X of a separated nearness space X, which 

will be called the simple completion of X. 

Since the simple completion behaves rather badly in 

so far as it destroys any of the properties "uniform", "re­

gular", "eontigual", "proximal", whereas the strict exten­

sion preserves all of them, we investigate in § 3 the que­

stion whether the strict completion ean be regarded as a 

reflection in some modified category. The answer is yes, 

if we restrict our attention to the category, of all sepa­

rated nearness spaces and those maps f :X—> I which have 

a uniformly continuous ( * nearness preserving) extension 

f* ;X*—> X* to the strict completions. We characterize 

these "extendable" maps and show, in particular, that uni­

formly continuous maps f :X—> X are extendable provided 

any of the following conditions holds 

(1) X is complete. 

(2) X is regular. 

(3) f is a projection. 

As an application of the above results, in § 4 we cha­

racterize those maps between Hausdorff topological spaces 

which ean be extended continuously to the Katitov or the 

Fomin H-closed extensions. 

In this paper, all spaces (nearness or topological or 

uniform) are supposed to be T-,-spaces. 
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0. Background!. A nearness space X is a pair consist­

ing of a set - called the underlying set of X aid, par abu­

se de language, usually also denoted by X - and a non-empty 

collection of non-empty covers of the set X - called uniform 

covers of X - satisfying the following axioms: 

(1 ) Any cover of X refined by some uniform cover of 

X is itself uniform. 

(2) Any two uniform covers Ot and ^ of X have a com­

mon uniform refinement. 

(3) If Ot is a uniform cover of Xf then so is 

int^OC = -Cint^A | A c Ot § f where xe int^A iff 4 X - 4 x i f A | 

is a uniform cover of X. 

The operator int« defines a topology on the set X. 

The corresponding topological space is called the underly­

ing topological space of X and all topological terms (open 

sets, adherence points, etc.) in a nearness space refer to 

this topologry. In this paper, we restrict our attention to 

those nearness spaces X, whose underlying topological space 

is a T-,-space (equivalently: such that {X - 4x}9 X ~ 4y£} 

is a uniform cover of X for any two different points x and 

y of X). A map f :X—¥ 1 between nearness spaces is called 

uniformly continuous, provided the f-preimage f Ot = 

= 4 t A | A e OL } of any uniform cover Ot of X is a uni­

form cover of X. The category of nearness spaces and uni­

formly continuous maps will be denoted by Near. 

A collection Ot of subsets of a nearness space X is 

called near .in X provided any uniform cover contains a mem­

ber which meets every member of Ct (equivalently: if 
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4X - A I A « OL | i s not a uniform cover of X) • Every co l ­

lec t ion with an adherence point i s near in X, but general­

ly not vice versa . A col lec t ion of subsets of Xf which i s 

not near in X, i s cal led far in X. A col lec t ion 01 of sub­

se ts of X i s called mlcromeric in X provided that for any 

uniform cover £r of X there ex i s t s A € OL and B e ^ with 

AcB. A micromeric f i l t e r i s cal led a Cauchy f i l t e r . Ivery 

convergent f i l t e r i s m Cauchy f i l t e r , but generally not 

vice versa . I t can be seen easi ly that a col lec t ion Ct of 

subsets of X i s near ( resp. micromeric) in X i f f the c o l ­

lec t ion 

secCt =-4BeX[ B n A + # f or a l l A € Ct | 

i s micromeric (reap, near) in X. I f a col lect ion Ot, co re f i -

nes gr , i . e . i f | X - A | A « C £ } ref ines |X - B \ B • fifi*?, 

and <#> i s micromeric ( resp. ^8* i s near) , then ifr i s micro­

meric ( resp . Ct i s nea r ) . A map between nearness spaces i s 

uniformly continuous i f f i t preserves near col lec t ions 

(equivalenily: i f f i t preserves micromeric co l l ec t ions ) . 

For any nearness space X, the maximal elements of the 

set of a l l non-empty near cdl lect ions in Xf ordered by i n ­

clusion, are called c lus te r s in X. Every c lus ter OL i s a 

g r i l l , i . e . s a t i s f i e s 

ku B e 01 i f f (k m CM, or E * CI ) . 

ivery near grill in X is micromeric in X. A nearness space 

X is called complete provided every cluster has an adheren­

ce point in X. Every nearness space can be densely embed­

ded into some complete nearness space. lhe embedding e: 

:X—> X* , described below, is called the strict completion 

- 545 -



of X. The underlying set of X*" consists of all clusters in 

X. The function e:X—^X* maps every xeX onto the cluster 

consisting of all those subsets of X which have x as an ad­

herence point. Por any subset B of X, the set B* denotes 

the set of all p e X * such that B meets every member of the 

cluster p. A cover CI of X^ is called uniform provided the­

re exists a uniform cover *iy of X such that 4B* | B § ^ } 

refines 01 • 

A nearness space X is called uniform (or a uniform spa­

ce) provided every uniform cover of X has a uniform star-

refinement. Por uniform spaces, the above concepts corres­

pond with the familiar uniform concepts. In particular, e: 

•X—^ X* is the usual completion of a uniform space. A 

nearness space X is called regular provided, for every uni­

form cover C& of Xf the collection 

i B c X | B < x A for some A m 01 f 

is also^ a uniform cover of Xf where B <y A means that 

•|AfX - B| is a uniform cover of X. Every uniform space is 

regular. Por the categories Unif resp. Beg of uniform resp. 

regular nearness spaces and uniformly continuous maps, the 

strict completion can be characterized as complete (epi) 

reflections. A nearness space X is called topological provi­

ded every open cover of X is uniform. Ivery topological 

nearness space is complete. We will identify every topolo­

gical (T«,-) space X with the topological nearness space X 

whose uniform covers are precisely the interior covers of 

Xf i.e. those covers which can be refined by some open co-
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ver of X. (This provides, in fact, an isomorphism between 

the category of all topological (T-,- ) spaces and continu­

ous maps and of all topological nearness spaces and uniform­

ly continuous maps.) 

1. Separated nearness spaces. We study here the ca­

tegory SepN.ear of separated nearness spaces. Unfortunately, 

the definition of seoarated nearness spaces is technically 

unappealing, but if only the reader can survive reading it, 

we expect that he will be pleasantly rewarded by seeing so­

me of the nice properties of the category SepNear* 

1.1 Definition. A nearness space X is called sepa­

rated provided that whenever a collection 01 is both near 

and micromeric then -CGcX | 4 G i u OL is near in X | is near 

in X. The full subcategory of Near whose objects are the 

separated nearness spaces is denoted by SepNear. 

!3?he next four results appear in the papers Herrlich 

[171 and Bentley and Herrlich [4J| also, in the former pa­

per, Theorem 1.6 below was incorrect^ stated to be false. 

1.2 Proposition. A topological space is Hausdorff 

iff it is separated as a nearness space. Moreover, the un­

derlying topological space of a separated nearness space is 

Hausdorff. 

1.3 Proposition. Every regular nearness space is se­

parated. Hence, every uniform space is separated. 

^•4 Theorem. A nearness space X is separated iff its 

strict completion X* is separated. 
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1.5 Proposition. SepNear is heraditai^ in Near. 

I.e. any nearness sutospace of a separated nearness space 

is separated. 

!•$ Theorem. SepNear is productive in Near. 

Proof: Let (%)|gx toe a family of separated nearness 

spaces and let X » »JJ^ X^ toe their product in Near with 

(p »>j[—^X ) the projections. Let Ct toe a collection 

which is tooth near and micromeric in X. To prove that 

^ « 4 B c X | 4 B l y a is near in X} 

is near in Xf let % toe a uniform cover of X. Then there 

exist a finite subset J of I and, for each je Jf e uniform 

cover *Zt4 of X. such that
 x* 

. A , Pi1 U 4 refines % . 

For each ie I the collection p^CX is both near and micro­

meric in X4 f hence - by separatedness of X^ - the collec­

tion 

tf^ S I B C X J J 4ElupiCt is near in X^} 

is near in X^. Consequently, for each jeJ, there exists a 

U. e % * meeting each member of MK. This implies that, 

cj - uj • % he*cc Pj1(xj - V for each j€ J, X, - U. 4 Mr**, hence pf^X, - U.) # & 

x) It ( (M> \)\*j is a family of collections of subsets of 

X then 

f % d 3 * e~3 3 * J a 
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Since itr is a grill, no subset of 

belongs to *£r , i.e. every member of «&* meets 

^ a d S J 

If U is an element of *E with 

then U meets every member of %y . Consequently, £6* is near 

in X. 

fhe above proof works not only for products but for any 

initial (mono-) source ^P±*^mm^\^±§x ^n Near. In particu­

lar, it provides a proof for 1.5 too. 

1.1 Corollary. 

(D SepNear is an epireflective subcategory of Near. 

(2) SepNear is complete and cocomplete. 

(3) The forgetful functor SepNear—» Set is (onto, mo­

no source)-topological. 

1.8 Proposition. In SepNear. the monomorphisms are 

precisely those uniformly continuous maps which are infec­

tive and the epimorphisms are precisely those uniformly con­

tinuous maps f :X—£* I for which fX is dense in I. 

1.9 Corollary. SepNear is well-powered and cowell-

powered • 
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2. The complete reflection. &rein appear our main 

results concerning the epireflective nature of completeness 

in the category SepHear. 

2.1 Proposition. For a nearness space X, the follow­

ing conditions are equivalent: • 

(1) X is complete and separated* 

(2) Any collection, which is near and micromeric in 

X, has a unique adherence point in X. 

Proofs (1)—> (2). If 01 is near and micromeric in X, 

then by separatedness, 

Jfr = 4 B c X | 4 B } U CI is near in X } 

is a cluster in X. By completeness, ^r and hence Ct has an 

adherence point. If x and y are adherence points mt Ct, ,then 

the sets txl and«Cyf belong to r̂- , which implies x = y. 

(2)—1> (1). Since every cluster is near and microme­

ric, (2) implies completeness of X. Next, let OV be near 

and micromeric in X, let x be the unique adherence point of 

OL , and let 

*£y = i Be X | 4B } u (X is near i n X } . 

To show that *£r is * near, it suffices to ahow that x is an 

adherence point of every B 6 & . If this were not true for 

some B a & , then the micromeric collection Oiu 4B} would 

have no adherence point, and hence by (2) could not be near 

in X, in contradiction to the definition of iS* # 

2.2 Corollary. ([171) For a separated nearness space 

X, the following conditions are equivalent: 
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(1) X is complete* 

(2) Every near grill has an (unique) adherence point. 

(3) Ivery Cauchy filter converges to a (unique) 

point in X. 

2»3 Theorem. Completeness in Sep Near is productive. 

Proof: Let i^l^i &e a family of complete, separat­

ed nearness spaces and let X « .TĴ  Xj, be their product in 

Near with (p^sX—> % ^ j th® projections. Let Ct be a Cau­

chy filter in X. Then, for each ial, p^Ci is a Cauchy 

filter in X^ and converges by 2.2 to some point aĉ # Conse­

quently CIL converges to x « Cx^^-j., which by 2.2 implies 

completeness of X. 

We remark here that completeness is productive even 

in Near, but to prove that would require a big digression. 

2.4 Proposition. Completeness is closed - heredita­

ry in SepNear. 

2.5 Corollary. Completeness is epireflective in 

SepNear. 

2.6 .Remark. Since every separated nearness space can 

be densely embedded into a complete separated nearness spa­

ce (see 1.4), the epireflection maps are dense embeddings. 

Our next objective is an internal description of the 

complete reflection of a given separated nearness space. 

2.7 Definition. The simple completion e:X—¥ X of a 

nearness space X is defined as follows: 

(1) X is the set of all clusters in X. 

(2) e:X—»<X is defined by e(x) « I Ac X I x « Cl^k % . 
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(3) 4 cover 01 of X i s unifora i f f i t s a t i s f i e s the 

following two conditions s 

(a) e f t i s a uniform cover of Xf 

(b) for each p€X there ex is t s 4 e ft such that p e 4 

and e A meets each member of the c lus ter p . 

Any completion of X, which i s isomorphic to eiX—¥ Xf 

wi l l be called a simple completion of X. 
/*/ 

2.8 Remarks. It can be seen easily that X is a comp-

lete nearness space and esX—> X is a dense embedding in 

Near, i.e. e;X—>X is at completion. Moreover, the following 

hold: 

(1) eX is open in Xt 

(2) each point of X - eX i s isolated in X - eXf 

(3) p # i n t j ? 4 i f p # 4 and e 4 meets every member of 

the c lus t e r p . 

(4) p e C 1 ^ 4 i f f ( p « 4 or • " 1 A « p ) . 

(5) ft is near in % if ft has an adherence point in X 

or e" ft is near in X. 

(6) ft is micromeric in X iff ft converges in X or 

fBcX | eB # ft } is micromeric in X. 

(7) ft is a uniform cover of X iff ft is an interior 

cover of X and e f t is a uniform cover of X. 

^•9 theorem. If X is separated, so is its simple eom-

pie tion X. 

x) ft converges to p in X iff every neighborhood of p in X 

contains some member of C/L . 
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Proof; Before showing that X is separated, we first 

show that the underlying topological space of X i* laus-

dorff. Let pf qcX with p*q and let 

(fy* a | G c X ) Q meets every member of p } , 

Then (A* is near and micromeric in X so, since ($* is contain­

ed in the cluster p, it cannot be contained in q. Let 6 e 

e OL - q and let H * X - Q. 1!hen «f p i u eG and -tq J u eH are 

disjoint neighborhoods of p and q respectively. 

Now, let QL be near and micromeric in X. By 2.1, it is 

sufficient to show that 01 has a unique adherence point in X. 

Consider first the case in which OL converges in X. Sin-

ce the underlying topological space of X is Hausdorff, (It 

can have at most one adherence point. Suppose that OL does 

not have an adherence point. Then e~ 01 is near in X. But 

e OL is also micromeric in X so 

p = 4 p c X | - C B j u e""1 01 i s near in X § 

is a cluster in X. Clearly, p is an adherence point of Ot , 

which is a contradiction. 

Next, consider the case in which 01 does not converge 

in X. Then 

J f r M B c X |eB m OL } 

is micromeric in X. But *Ar is also mar in X so 

p » - ( B c X H l } u S^ is near in X } 

i s a c lus te r in X. In order to show that p i s an adherence 

point of OL , l e t k m OL and suppose that p ^ C l ^ A . Then 

e""1 A^p and so "Ce"*1 A I u fy i s far in X. Since tyc e^OL, 
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«-»l - » 1 1 

then e *Ct «ie A i u i d must also be far in X. But 

then Ct must have some adherence point q in X. Since e %r c 

c Ct , then it must be that I&- c q. Consequently, p = q, 

a contradiction. Kiis same argument can be used to show that 

the adherence point of (H, is unique. 

2.10 theorem. If e:X—p X is a separated completion, 

then the following are equivalent: 

(1) e:X—¥ I is a complete reflection of X in SepNear. 

(2) e:X—• X is a simple completion of X. 

(3) e:X—• X is topologically a simple extension (i.e., 

if A is open in X then so is any set B with (4neI)cBc4)f 

ani the following equivalent conditions hold: 

(a) Every interior cover Ot of Xf such that • C/C is 

a uniform cover of Xf is a uniform cover of X. 

(b) If Cl is near but has no adherence point in Xf then 

e~ & is near in X# 

(c) Xf Ct is micromeric but does not converge in X, 

then{BeX|e&*£&$ is micromeric in X. 

Proof: (1)«*-M2) We need only to establish the ap­

propriate universal mapping property of the simple comple* 

tiott e:X—p X. Let Z be a complete, separated nearness space 

and let f:X—P Z be a uniformly continuous map. Let g:X—• Z 
0«* 

be defined as follows: for each p€X f since the cluster p is 

near and micromeric, then so' is the collection 

fp M f A | A* pi . 

.therefore, fp has a unique adherence point g(p) in Z. It is 

easy to show that g#e = f and that g:X—*> Z is uniformly 
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continuous. 

(2) «-»• (3) is a simple exercise. 

2.11 Remark. Even though, from a categorical point 

of view, the simple completion of a separated nearness spa­

ce X - being its complete reflection in SepNear - is the 

"nicest*1 completion of X, it is not so from a more concre­

te point of view, since it may destroy many nice properties 

of X, as the following example demonstrates. 

2.12 Sample. Let [0,11 be the closet unit interval 

with its usual nearnes ( = uniform, = topological) structu­

re, and let X be the nearness subspaee of [0,13 , determin­

ed by the set [0,13 - 4 ~ I n = 1,2,...} . Then X, as a sub-

space of a compact Hausdorff space, is proximal and hence 

uniform, regular, and contigual. But the complete reflection 

of X (which is nothing else but the simple topological ex­

tension of the underlying topological space TX of X, deter­

mined by the same filter traces as the strict extension 

[0,13 of TX) is neither proximal nor uniform nor regular 

nor contigual. Moreover: 
/"V 

(1) X is never uniform or regular, unless it coinci­

des with the strict comp3e tion X* of X. 

(2) X is never proximal or contigual unless X - eX 

is finite. 

2.13 Remark. Heldermann [331, tl43 has studied the 

category HausNear, the full subcategory of Near whose ob­

jects are those nearness spaces whose underlying topologi­

cal space is Hausdorff. That study was focused mainly on 
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category theoretic properties of BgusNear« e.g. a characte­

rization of epie and monos is given. 

Carlson has introduced the concept of ultrafilter 

complete nearness spaces ( = B-complete in [63)t i.e. tho­

se nearness spaces in which every near ult rafilter has an 

adherence point, and has shown [71 that ultrafilter comple­

te' spaces form an epireflective subcategoiy of HausNear. 

Although for separated spaces, the concepts complete and 

ultrafilter complete coincide, (Proof: It follows from 

(1)—P (2) of 2.2 that complete implies ultrafilter comple­

te. Suppose X is ultrafilter complete and let % be a clus­

ter on X. Let (£. be the collection of all subsets of X 

which meet every member of CC • Then ^ is a near aid Gau-

ehy filter in X. Consequently, C£ consists of precisely tho­

se subsets A of X for which 4A f u ($* is near in X. Let VI 

be an ultrafilter with C$> c It • Then 'It is a Cauehy fil­

ter, hence % is near. Therefore, % has an adherence point 

x which must also be an adherence point of C£* • Consequent­

ly, «fxi a CI and so x is an adherence point of Ct . there­

fore, X is complete.), his ultrafilter completion X—> X* 
*•*• 

is, in general, different from our simple completion X—+ X. 

In particular, X#need be neither complete nor separated. 

(Ixample: Let X be the nearness subspace of £0,1] determin­

ed by the set4— |n = l,2f...| . Then X* is neither comple­

te nor separated.) 

3. The strict completion as reflection. The strict 

compile tion preserves the properties separated, regular, 
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uniform, eontigual, proximal and it preserves the dimen­

sion. Hence it is natural to ask whether, for separated 

spaces, it can be regarded as a reflection in some sensib­

le way. 

3.1 Definition. A uniformly continuous map f iX—P X 

between nearness spaces X and X is called extendible pro­

vided there exists a uniformly continuous map gsX*6, —p X* 

between the strict completions of X and X for which the 

diagram 

-1 i -
X *»X* 

commutes, where X—•• X* and X—P X* are the strict comp­

letions of X and X respectively. 

3.2 Proposition. The strict completion is the comp­

lete reflection in the category of separated nearness spa­

ces and extendible maps. 

Proof; See Porter [243 . 

3.3 Proposition. Let f:X—p X be a uniformly conti­

nuous map between separated nearness spaces X and X. Then 

the following are equiva^e nt: 

(1) f ;X—> X is exteiflible. 

(2) If Sir is far in X then there exists C& far in X 

such that for each A € OC there exists some B m £r such 

that the following condition holds; whenever (%> is a clus­

ter in X with 4 A J u <J" far in X thenlBl u fOy is far in 

I. 
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(3) If ̂  is far in I then there exists 0L far in X 

such that for each 4 §, OL there exists some B e %r such 

that the following condition holds: whenever ($** is both near 

and micromeric in X with 441 u 0^> far in X then -iBiuf ($* 

is far in Y. 

Proof: (1 )—• (2 ) . Let g : X * — • Y* be - uniformly con­

tinuous with S d e x = *r° * where «^ t X —^ X * a n a C Y : ^ — ¥ "*** 

are the s t r i c t completions of X and Y respect ively . Let *£r 

be far in Y. Then f Qlj^ %j^ ^ s ^ a r i» X* . So, by con­

s t ruc t ion of X * , 

01 -» ike X 1 for some H s g"*1 Cl .^ e x Jfr , , He Cl^.* e ^ i 

i s f a r i n X. For each k e Of, there exis ts B m i£r with 

g^Cly* e^BcCl^ig SjA. Let ^ be a c lus te r in X with 44} u 

u (£ far in X. then k fy (f so (f 4s C l j* e ^ and thus 

g((&) ^ Cl^* eJB which implies that B^g(tjt-). As i s easi ly 

shown, f ($» c g(($») and, since t(j^ i s both near and microme­

r i c in Y 

g((f) " f l c Y l iMlutq, i s near in Y} . 

So, -CB1 wf (fy i s f a r in Y. 

( 2 ) — • (3 ) . Let S&* be far in Y and choose 01 as in (2) . 

Let 4 tf C£ and Is t B € *ir so tha t the condition in (2) 

holds. Let ($» be both near and micromeric in X with 4 4 } u 

u O^ f a r in X. Let 

% =4 HcX] -CHI u Cf i s near in X ? . 

Then $6 i s a c lus te r in X and 4 4 | u X i s far in X. So, 

4 B | u f 9€ i s far in Y. Let 

- 558 -



4 ? » « 4 l ) c T ( - C D ? u f t ^ i s near in XJ 

and 

VL^i\JcJ\4Viu f 2€ i s near in X I . 

Since fC^cfdt and both of these are both near and micro­

meric in X, then 4^ =- t/L . So, 4 E J u f ( | - i s f a r in T* 

(3)—.> (2) i s obirious because every c lu s t e r i s both 

near and micromeric. 

(2)—» (1) . Let g:X*—+ X* be defined by 

g(C^) =4 B c X | - t B l y f C§* i s mear in X | 

for each CJ**e X* . Since f<$- i s near and micromeric in X, 

g(<J*) i s a c lus te r in X. I f x £ l . then the continui ty of 

f:X—> X guarantees tha t fe-g(x) c e*»(f(x)) and so fcg(ex(x))= 

- e^ ( f (x ) ) . Therefore go e x = ®Yotm ^° s n o w ***** S*x*—** X* 

is uniformly continuous, l e t (&* be far in X* and l e t 

*Sr * i B c T I for some D e i* , D CGLY*
 e x B ' # 

Then *£r i s far in X so there ex is t s OV far in X with the 

conditions in (2) s a t i s f i ed . I t i s suff ic ient to show tha t 
C1X# eX ^ corefines g <tf> . To that end, l e t A « CI and 

choose B « *&" so that the condition in (2) i s s a t i s f i e d . 

There exis t s D e # with D c Cly* eyB. We sha l l show tha t 

g ^ D c G l j * e ^ . So, l e t tjf, e g""1©. l i e n Bcg(gL) which imp­

l i e s that -CBlu tCjfm i s near in X. Bie condition in (2) then 

implies tha t 4kl u Cjf* i s near in X. So, A € C£* and thus 

<fy e C l ^ e -̂A. 

Harris £12] defined a concept which he called 10-map 

in order to make the Wallman compactification a functor . 
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Bentley and Naimpally 153 generalized Harris' concept in 

order to make the Wallman-type compactifications of Steiner 

[28] a functor. The characterization of extendible maps gi­

ven in the preceding proposition, although not a generali­

zation of the HO-map concept, is a generalization of a 

slight variation of the WO-map concept. Maps satisfying 

condition (2) of Proposition 3.3 were investigated by Bent-

ley [33. 

3.4 Proposition. Let f:X—• Y be a uniformly conti­

nuous map between separated nearness spaces X and Y. Then 

(1) If X is complete then f;X—P Y is extendible. 

(2) If Y is regular then f:X—• Y is extendible. 

(3) If X is a product and f;X—i* Y is a canonical pro­

jection then f;X—•Y is extendible. 

Proof: (1) is obvious and (2) is known (see Morita 

[233 and Herrlich Cl6j). In order to prove (3), let X-, and 

Xg be separated nearness spaces and let 

be their product in Near with f = p ^ (This is general 

enough since we can write L s . T T , X..) We shall show that 

* s Xf**2—* Xl *s exteIiait)le by showing that (2) of Proposi­

tion 3.3 is true. Let *&* be far in X-̂  and let CM * f"1-^ . 

For each A c CI there exists B m tfb* with A = f-1B. If 

B = 4> then we are through. So, suppose that B 4-# . Let 

^ bea cluster in X-jK X^ with U f u (̂  far in X. Then 

there exist 3E^, SKg far in X-̂ , X^ respectively for 
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which x^ 

f"1 ^ v p g 1 %t2 corefines ik\ u C^ • 

Since <$* i s near in X-x XL then 

Consequently, there exis t H-, € 2C, and Eg e 2Cg with 

f I l H l ^P i l H 2f # ' 

Therefore Acf~ n-|U pg » 2
 a n a> since A = f"nB #» $ and 

f"*%-iu p2*«2 + x» then we mist have BcH.# We sha l l comple­

te the proof by showing that 

Mx corefines iB i u t (% , 

To tha t end, l e t 1 € 3€^ and suppose tha t 1 contains nei ther 

B ncr m member of f OL . Then 

Ac f'-^up^Hg o r f " l l c ?i »2 c 9̂  # 

Since Bijrl, i t must be that f ' ^ w p ^ T l g * €$*> ana, since ^ 

i s a g r i l l , f I e O^ or P<J *% € ^ • f l ^ l u p 2 2 ^ *Jtt" 

p l ies that P*» » 2 ^ 9^ • s o i t IBUlSt *• t * l a t f " • € ^ * ^ 

then 1 * ff"hsietOf* which i s a contradict ion. 

3.5 Proposit ion. The category SepNear i s productive 

i n SepNear, where SepNear denotes the object f u l l subcate­

gory of SepNear whose morphisms are the extendible maps. 

The Proposition 3.5 follows immediately from 3.4 and 

the following Lemma. 

x) I f Otx and OL2 are col lect ions of subsets of a space, 
then we write ^ v Ct« M A - u k l A. g Ct, and 
k2€U2%. ^ 1 - 2 1 1 
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Lemma: Let (g^:X—* Z^). -| be initial in SepNear and 

suppose that f:X—> X is uniformly continuous on the sepa­

rated nearness space X and that for all ie I, g. « f :X—> Z. 

is extendible. Then f:X—*Y is extendible. 

Proof: We apply Proposition 3.3. Let *ir be far in Y. 

Then for some finite subset J of I and for some family 

C36.)jeJ with each ^ . far in Z ., we have x* 

1V3 «1 3£j corefines afr- # 

For each j € J there exists Ct. far in X such that for each 
«J 

A 6 CI . there is H 6 $C • for which whenever <X is a clus­

ter in X with 4A? u <#- far in X then *H J u (g. o f )(^. ia 

far in Z .. Let OC s A/-i ̂  4- 3&en ^ is far in X. Let A e 

€ C4 . For some family (A.).^r with each A. e CI4. A = 
a , V D *1* ̂ e r e «i-*ta * family (H.). j with each H- e <f£-

such that whenever (£, is a cluster in X with 4A. fr u $* ^ a r 

in X then-tH.} u (g.« f)CA, is far in Z.. There is B £ ^ 

with 

Let CL be a cluster in X with -CA} u ty. far in X. We must 

show that-IB}u f (#. is far in Y. For all j e Jf 4 A. 5 u <#* 

is far in X so IRA U (g. of)QL is far in Z. and ig^hi^iu 

ue~i'*st9' i s far ** x* Let * " iYa "-i^j *w'*$*t t cPm 

x) If (^••j^j^j - s a ftu-i-y of collections of subsets of X 

then ? > Y a < V ' W V 1 . J * a 0 J ' 
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Then $* is far in 1, and since $* corefines |B}u tCh*» f we 

are through. 

3*6 Example. SepNear floes not have equalizers. 

Proof; Let 

A = i{ | fy)( ncN and - l ^ y ^ l ? ? 

B • 4(x,0) | O^xirl} 

and 

C a 4( |,y) | n€N and O^y^ll . 

Let Z be the topological space on AuB whose topology is 

generated by the usual topology plus A as a closed set* Let 

1 be the nearness subspace of Z on Bi/ C. Let X be the near­

ness subspace of X on X - (BnC)f aid let W be the nearness 

subspace of X on XfiB. 

Then the embedding W — • I 0f11 f (x,0) *—* x, and the 

inclusion X — * X are the strict completions of W and X 

respectively (here tOf11 is taken with the usual topology). 

The inclusion f :W—> X is a closed embedding but is not ex­

tendible (its unique pointwise continuous extension is not 

continuous at 0). Let rfs;X—• Z be defined by taking r$ 

:X—¥ Z to be the inclusion and ssX—P Z to be 

s(xfy) » (xf-y). 

Then r and s are extendible. Since ff being obvioasHjr the 

only candidate for an equalizer of r and s in SepNear . -de 

not extendible, the pair (rfs) has no equalizer in SepNearQ. 

The following diagram illustrates the situation. 
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• O O ii o 

# • * 

4# Applications to H-closed extensions» Harris [113 

calls an open cover (Jb of a topological space X a p-cover 

of X provided that the union of some finite subcollection 

of (%> is dense in X, 

4.1 Definition* Associated with any Hausdorff topo­

logical space X is a nearness space HX on the same under­

lying set as X and with its nearness structure defined by: 

(II is a uniform cover of HX iff (A is refined by some p-

cover of X. 

The nearness collections in HX are characterized by: 

(£ is near in HX iff (M* has an adherence point in X or the­

re exists a maximal open filter on X each member of which 

meets every member of (Jl # 

1*he mieromerie collections in HX are characterized by; 
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01 is micromeric in HX iff CM, converges in X or there ex­

ists a maximal open filter on X which corefines (%> • 

Harris [111 calls a map f;X—^Y between topological 

spaces a p-map iff the inverse image of a p-cover of Y is 

a p-cover of X. This relates to our terminology as follows; 

For a continuous map f;X—> 1 between Hausdorff topologi­

cal spaces, fsX—•Y is a p-map iff f;HX—• HY is uniform­

ly continuous. Also according to Harris, a p-filt er on a 

topological space X is an open filter on X which is either 

the open neighborhood system of a point or a maximal open 

filter that does not converge. 

Our preceding results immediately imply the following 

three propositions. 

4.2 Proposition. Let X be a Hausdorff topological 

space. Then 

(1) HX is a separated nearness space and X is the un­

derlying topological space of HX. 
/•**• 

(2) The simple completion HX of HX is the KatHtov ex­

tension of X. 

(3) The strict completion (HX)1** of HX is the Fomin 

extension of X. 

4.3 Proposition (Harris [111); Let f;X—?• Y be a con­

tinuous map between Hausdorff topological spaces. Then f is 

extendible to the Katitov extensions of X ani Y iff f:X—*• Y 

is a p-map. 

4.4 Proposition. Let f:X'—** 1 be a continuous map 

be twee n Hausdorff topological spaces. Then f:X—•Y is ex-
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tendible to the Fomin extensions of X and X iff f :X—•» X i s 

a p-map and the following condition i s s a t i s f i e d : If 9C i s 

a p-cover of X then there i s a p-cover ($> of X such tha t 

for each G m CJ, there exis ts H € dt for which whenever % 

and 10 are p - f i I t e r s on X and X respect ively with G i, ^ and 

H £ 10 then there exis t U i t and V * 10 with ¥ A fU • # * 

Proof: Use (!)«-> (3) of Proposition 3 .3 . 

Hemark: We have heard recently that a resul t s imilar 

to 4.4 was known to D. Har r i s . As far as we know, t h i s r e ­

s u l t i s unpublished u n t i l now. 
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