
Commentationes Mathematicae Universitatis Carolinae

Aleksander V. Arhangel'skii
On bicompacta which are unions of two subspaces of a certain type

Commentationes Mathematicae Universitatis Carolinae, Vol. 19 (1978), No. 3, 525--540

Persistent URL: http://dml.cz/dmlcz/105874

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/105874
http://project.dml.cz


C0MM1NTATI0N1S MATHIMÂTICAi UNIV11SITATIS CAROLINAE 

19,3 (1978) 

ON BICOMPACTA TOICH AHE UNIONS OF CTO SUBSPACES OF A ŒHEAIN 

1JFS 

A.?. ABHANQIL'SKIÏ, MOSCOW 

Abstract: Let X be a bicompact space, X * XuZ, and 
suppose that we have some information about X and Z. What 
can be said then about X f About Fr (X) f The aim of the pre­
sent paper is to study this situation with the emphasis on 
the following properties; sequentially, metrizability, be­
ing a Moore space, being an Iberlein bicompactum. The re­
sults are applied to the investigation of properties of the 
remainders of metrizable spaces. 

Key words: Bicompact space, sequential space, Moore 
space,Iberlein compact, space of countable type, uniform 
base. 

AMS: 54D30 

We consider the following general problem. Let (P be a 

class of topological spaces and let X be a bicompact Haus-

dorff space such that X = X-jVXg, where X-,, Xg 6 (P . What 

can be said in this situation about properties of X f This 

question is aimed at clarifying what kind of bicompacta we 

can get when constructing them by joining together two spa­

ces belonging to a certain "basic11 class of spaces. The Ale-

xandroff #s "double circumference1* is a classical example of 

a non-metrizable bicompactum which is the union of two met­

rizable subspaces. In particular, we have in mind the fol­

lowing special question. Is it possible to construct a non-
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sequential bicompactum of countable tightness as the union 

of two rather simple spaces? 

But the general problem referred to above is interes­

ting not only in connection with examples. The following 

general question is a special case of it. Ihen a space X 

has a remainder of the same type? There are different ways 

to make the question more concrete. First, find classes CP 

of spaces such that every X € <P has a remainder in (P * 

When X has a remainder which is homeomorphic to X ? (A re­

mainder of X is any space of the form bX\ X where bX is a 

bicompact Hausdorff extension of X.) Given a class CP of 

spaces, how to characterize X e CP such that some remainder 

of X belongs to CP ? Ihen a metrizable space X has a met­

rizable remainder? then a Moore space has a remainder which 

is a Moore space? Ihen a symmetrizable space has a symmet-

rizabUe remainder? The same question can be formulated for 

^-spaces, for semi-stratifiabUe spaces etc. 

All the spaces considered in this paper are assumed to 

be completely regular. cj» ••• means "closure in X w. If we 
X 

write el ..., it is to be understood that the closure is 

taken in the largest of all the spaces under consideration. 

If is the set of all positive integers j w(X) - the weight 

of X; t(X) - the tightness of Xj nw(X) - the networkwei#it 

of X; c(X) - the Suslin number of Xj if (FfX) - the pseudo-

character of F in X; ^(FfX) - the character of F in Xj d(X) 

- the density of X; s(X) - the spread of X. Definitions of 

these notions can be found in t63. 
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Let us remind some known results related to the gene­

ral problem under consideration. Let X be a bieompactum 

and X » lu Z. Then: 

1) If w(X) £ J#Q and w(Z) £ &Q then w(X) * MQ 

(Ju. Smiraov E17J) 

2) If w(I) ̂  t and w(Z) £ <Z then w(X) £ ts 

(A. Arhangel'skii, see iSl) 

3) If I and Z are perfect spaces then t(X) £ 4*0 

(A. Arhangel *ski:f C3J) (perfect means that every closed set 

is Q^) 

4) If f and Z are metrizable then X is a Frdchet-Ury-

sohn space C3] 

5) If I and Z are metrizablt then X is an Eberlein 

bicompactum (M.l. Budin, l.A. Michael £93)» 

Below we formulate and prove some new results closely 

related to 3),4) and 5). 

theorem 1. Let (P be a class of spaces such that the 

following four conditions are satisfied: 

1) every X c (? is sequential! 2) if X 6 tP , I c X and X 

is closed in X then I g {p ! 3) if I f ^ and X is count-

ably compact then X is bicompactj 4) if X c 3* and X is 

bicompact then X is first countable at ̂ yiense set of points. 

Further, Is t Z be a bicompact space such that Z » X,uJU 

where X]L 6 & and X^ € £P . Then Z is sequential. 

Proof. We have: Z « X-jU X^9 X-̂  # 0 9 JL^m <P . Con­

sider any Ac Z sequentially closed in Z. Then the set A^ » 

== AnX» is sequentially closed in X^ and hence A.'is closed 

in X. (condition 1)). Let us assume that A is not closed in 
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Z. We fix zecJ (A)\A. It does not matter whether zcX*, 

or zeXg. Let zeXg. Since A2 is closed in X^, we have 

z^cJ^Ag). Let Qz be a neighbourhood of z in Z such that 

c£ (Qz)rscJL (A2) = A .We put A^ = cJL (Qz)n A. Clearly 

A* = c£ (Qz)nklf the set A* is closed in A^ and zec£CA*)\ 

\ A? . Consider a set McA? such that M is discrete and clo­

sed in A? . We shall show that the set M is finite. Suppose 

that M is infinite. We can assume then that|M|= y(Q» Obvious­

ly, M is closed in X-,. Hence the set F = cj (M)\M is con­

tained in X2# As M is discrete, F is closed in Z. It fol­

lows that F is bicompaet* Since M is infinite, we have 

F + A .It follows from 4) that % (x,F) ̂  4fQ for some x€ 

€F, On the other hand, f*(P,ci(M)) £ | Ml = 4-?0. Thus 

7Q(Ffc£ (M)) 4s 4C0 and from ^ (x,F) 6#0 it follows that 

%(%tc£ (M)) .4 tfQ. From this we infer that there exists a 

sequence £ in M converging to x. Since A is sequentially 

closed in Z,we have x#A. From xcFcXo it follows that xe 

6 Ag. But this contradicts x€ c£ (U)c c£ (Qz)c Z\ cJl (k^). 

Hence M is finite axfl the space A? is countably compact. 

It follows from the conditions 2) and 3) that A^ is bicom-

pact. Hence A is closed in Z and this contradicts z e 

6 c£ (At)\A^ # The proof is complete. 

If the Martin's Axiom MA is assumed (see E7J), then 

condition 4) in Theorem 1 can be dropped. 

Theorem l'. Assume MA. Let (P be a class of spaces 

such that: 1) each X € %* is sequential| 2) if X € (P t 

YCX and Y is closed in X then Y € <P ; 3) if X 6 & and 

X is countably compact then X is bieompact. Let Z be a bi-
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compact space such that Z = X^u Xg where X-, e (P and Xg e 

6 {P . Then Z is sequential. 

Proof. We begin the argument as in the proof of Theo­

rem 1. To get a sequence i in M converging to some point 

of F we use the following theorem of D.V. Ranchin [111; 

under MA every bicompactum which can be represented as the 

union of a countable family of sequential bicompact subspa-

ces is sequential. Since F = cX(M)\M is sequential bicom­

pactum and M is countable, the theorem of Hanchin can be 

applied to ci(M). Hence o,Jt (M) is sequential. Since M is 

not closed in ci(M), it follows that there exists a sequen­

ce $ in M converging to some point in c~£(M)\ M = F. 

Now we can complete the proof of Theorem l' exactly in 

the same way as we have completed the proof of Theorem 1. 

Corollary 1. Let X be a k-space and X = XuZ, where 

X and Z are both sequential and the diagonals in Xx X and 

ZxZ are G^-f-sets. Then X is sequential. 

Proof. It suffices to consider the case when X is bi­

compact. The class (P of all sequential spaces with G^-di-

agonal trivially satisfies the conditions 1) and 2) in Theo­

rem 1. From a theorem of J. Chaber (see [6 3) it follows 

that the conditions 3) and 4) are also satisfied by {p . 

Hence X is sequential by Theorem 1. 

Corollary 2. If X is a k-space and X = XuZ where X 

and Z are both symmetrizable (see [103) then X is sequen­

tial. 

Proof. We can assume that X is bicompact. For the 

class (P of all symmetrizable spaces the conditions 1) and 
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2) of Theorem 1 are obviously true. It was shown \$ S.I. 

Nedev ClO] that £P satisfies the condition 3) as well. It 

is known also that erery symme;trizable bicompaetum is met-

rizable. Thus we can apply Theorem 1 and the space X is se­

quential. 

If X is a Moore space, or S'-space £6], or semi-stra-

tifiable space (see £8]) or there exists a one-to-one con­

tinuous mapping of X onto a Moore space, then the diagonal 

in X?<X is a G^--set. Hence we have 

OorolJary 3. Let X be a k-space and X * Xu 2. Then 

in each of the following four cases the space X is sequen­

tial: 

a) X and Z are semi-strat if labile sequential spaces; 

b) X and Z are sequential €-spaces| 

e) X and Z are Moore spaces; 

d) X and Z are sequential and each of them can be 

mapped onto a Moore spae-e by a one-to-one continuous mapp­

ing. 

Corollary 4. If Martin's Axiom holds then every k-spa­

ce which is the union of two r ealeompact sequential spaces 

is sequential. 

Proof. 'It is easy to cheek that the class (P of all 

realeompaet spaces satisfies all the four conditions of The­

orem 1. 

If the summands X and Z in X * Xu Z are such that every 

bieompaet subspace of X and erery bicompaet subspaee of Z 

satisfies the first axiom of eountability at a dense set of 

points, there is no need to assume the Martin's Axiom. Thus 

we have 
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Corollary 5. Let X be a bicompactum and X » Xu Z whe­

re X and Z are realcompact sequential spaces such that if 

F c X or F c Z and F is bicompact then F is first countable 

at a dense set of points. Then X is sequential. 

A space X is called metalindeldf if every open cover-

ing of X can be refined by an open point-counta ble covering. 

G. Aquaro proved (see [61) that every metalindeldf countab-

ly compact space is bicompact. 

Corollary 6. Assume Martin's Axiom. If £ is bicompact 

and X a XuZ, where X and Z are metalindeldf sequential spa­

ces then X is sequential. 

Again we can drop the Martin's Axiom if all bicompact 

subspaces of X and Z are first countable at a iense set of 

points. In particular, we have 

Corollary 7. If X is a k-space and X = X u Z where X 

and Z are spaces with a point-countable base then X is se­

quential. 

Corollary 8. Assume Martin's Axiom and the inequality 
BQ 

2 > ^1* Let x be a fc-space and X = X u Z where X and Z 

are perfect. Then X is sequential. 

Proof. Let us consider the class (P of all perfect spa­

ces (X 6 {P iff every closed set in X is a G^-set). It is 

clear that £P satisfies the conditions 1),2) and 4). It fol-

lows from MA and 2 > ^ i that the condition 3) also holds 

for iP : this remarkable theorem was proved by W.A.H. Weiss 

[153. Theorem 1 now yields that X is sequential. 

Definition I [2]. A space X is of counta tte type if 

for each bicompact F c X there exists a bicompact F* c X such 
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that Fc F* and % (F%X) £= **»Q. 

The boundary Fr(A) of a set Ac X in X is the set 

c4(A)nci(XsA) # We consider the following general pro­

blem. Let X be a bicompactum and AcX. Assume, that a class 

£P of spaces is specified and A € {P , X\ A e (P • that 

can be said then about Fr(A) ? 

theorem 2. Let X be a bicompactum and Xc X. Then the 

following statements are true: 

a) if X and X\ X are semi-stratifiable spaces of countab­

le type then the bicompactum Fr(X) is perfectly normal And 

hereditarily separable; b) if X and X\ X are € -spaces 

(see £61) of countable type then Fr(X) is a metrizable bi­

compactum; c) if X and X\X are Moore spaces then Fr(T) is 

a metrizable bicompactum. Furthermore, in each of the cases 

a),b) and c), the space X\Fr(T) is locally bicompact and 

locally metrizable, and X\Fr(X) belongs to the same class 

as X and Z. 

Proof. First we shall prove the last assertion. We 

have; X\Fr(X) * (X\ Fr(X)) u ((X \X) \ Fr(X)), where 

X\Fr(X) and (X\X)\Fr(X) are disjoint, open and closed 

sets in X\Fr(X). Besides, X\Fr(X) is open in X and 

(X\X)\Fr(X) is open in X\X. To prove the tost assertion 

of Theorem 2 it suffices now to remind that every semi-stra­

tifiable bicompactum is metrizable [8]. Now let us prove a). 

Since I is of countable type and cj6 (X) is bicompact, 

it follows from a theorem of Henriksen and Isbell £133 that 

Xx * c.4 (X)\ X is LindelSf. Since X-, c Z « X\X and Z is se­

mi-stratifiable , X^ is also semi-stratifiable. Applying the 
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results from l&l we conclude that X^ is hereditarily Lin-

deltff and hereditarily eeparatflLe. By the same argument we 

show that the space Z.̂  » cX(Z)\ Z (where Z » X\X) is he­

reditarily Lindel5f and hereditaria separable. Hence 

Fr(X) s X-jU Z, is a hereditarily LindelSf and hereditarily 

separable space as well. 

b) Every 6?-space is semi-stratifiable. Hence the ar­

gument in a) shows that X̂ ^ * cX(X)\X and Z1 = c J ( X \ X ) \ 

\(X\X) are Lindeldf spaces. Since each Lindeldf C-space 

has a countable network, nw(X-,) -6-K0 and tmiZ^} £ &Q. It 

follows that Fr(X) « X,uZ, has a countable network. Now 

Fr(X) is a bicompactum. Hence w(Fr(X)) » nw(Fr(X)) £ <ftQ 

(see C61) and lr(X) is metrizable • 

c) Every Moore space is a € -space £lj. Besides, eve­

ry Moore space is a p-space. Since N.?„ Yelled© til has 

shown that every p-space is a space of countable type, it 

follows that every Moore space is & space of counta tie type. 

It remains to apply b). With the help of Theorem 2 we get 

the following generalization of a theorem of M.l. Hudin and 

1. Michael £91. 

Theorem 3. If X is a bicompactum and X * lu Z where X 

and Z are spaces with uniform bases then X is an Iberlein 

bicompactum. 

Proof. From Theorem 2 b) it follows that Fr(X) is a 

bicompactum with countable base. We put JL * X\Fr(X), X-. s 

* X\Fr(X) and Z% « (X\X)\Fr(X). Then (see the proof of 

Theorem 2) X-ĵ  = X-̂ u Zlf X1r»Z1 * A f X^c X, Z-̂ c Z and Xlf 

Z- are open and closed in X.,. It follows that the space X^ 
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has a uniform base. Since X is normal and the space fr(X) 

has a countable base, it is not difficult to construct a 

countable family f of open F^-sets in X such that y se­

parates the points of Fr(X) (i.e. if x#
fx

##e Fr(X) and 

x#+. x # # then there exists U € y such that x#€ U and 

x # # ^ U). We can fix a uniform base M in the space X^ such 

that £ U 3 A PrCX) = A for each U • (B •Then each Uc S 

is an open "^ -set in X and the family $ is ̂ -point-

-finite. We put c8 s «8 u y » Then & is the union of 

a countable family of point-finite systems of open F̂ - -

-sets in X. One can easily check that 53 T -separates 

'the points of X - i.e. for any x#
f x

##« X there exists 

U€ <B such that V n {x*,x##J is a singleton. Applying 

the Rosenthal's Theorem C 12J f we conclude that X is an 

Eberlein bicompactum. 

Example 1. Let us consider the well known Franklin's 

bicompactum X (see l3])# We haire: X * X,u Jt^uL where Xlf 

Xg ani Xj are discrete spaces, X^ is a singleton, X, is eoun-

tably infinite ani open in X and X2 is uncountable. We put 

X = X,u %2 a n a z a X3» ®ien Y and Z are Moore spaces and X = 

= XuZ. Nevertheless, X is not an Eberlein bicompactum - it 

is not even a f^chet-Urysohn space. The same example shows 

that Theorem 2 is no longer true when X is decomposed into 

three metrizable summands. Note that it is not a coincidence 

that X is sequential - see Corollary 3f c). 

Let us consider the spaces X# = l u X n and Z# = X\X # « 

-= X2. The space X
# is countable so that X# is a ff-space. Bie 

space Z# is discrete so that Z# is metrizable. Hence Z# is a 
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€ -space of countable type. On the other handf ®JL (1 ) = Xf 

c£ (Z#) = J^UX3 and Fr(X#) « cX (I#)nci(Z#) = .XgUXj. 

.thus Pr(X#) is a non-metrizable bicompactum which is not even 

perfectly normal. The reason (see Theorem 2 b)) for non-met-

rizability of Fr(X#) is that X# is not a space of countable 

type - all other conditions are satisfied by X, X# and Z#. 

This shows that !Hbteorem 2 cannot be significantly improved. 

Theorem 2 permits to get particularly strong conclusions 

when the summands do not have points of local bieompactness 

- or there are not too many such points. 

Corollary 9. Let X be a bicompactum and X « IuZ, where 

X and Z are semi-stratifiable spaces of countable type with­

out points of local bieompaetness. Then X is a perfectly nor­

mal hereditarily separable bicompactum. 

Proof • Clearly both X and Z are everywhere dense in X. 

Hence Fr(X) = X. From Theorem 2 a) it follows that the bicom­

pactum X is perfectly normal and hereditarily separable. 

Corollary 10. Let X be a bicompactum and X s Xu Z where 

X and Z are i"-spaees of countable type such that In Z * A • 

Suppose also that X and Z do not have points of local bieom­

paetness. Then the space X is metrizable. 

Proof. We argue as in the proof of Corollary 9 and then 

refer to Theorem 2 b ) . 

Since every Moore space is a space of countable type and 

every subspaee of a Moore space is a Moore space, we haves 

Corollary 11. Let X be a bicompactum and X « IuZ, whe­

re X and Z are Moore spaces without points of local bieom­

paetness. Then X is metrizable. 
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We can somewhat weaken the restrictions on X and Z in 

Corollaries 10 and 11 - it will suffice to assume that the 

sets of all points of local bicompactness in X and Z. form 

IindelQf spaces. 

Our considerations naturally lead to some curious sta­

tements about the remainders. 

Proposition 1. Let X be a Moore space and bX - a bicom-

pactification of X such that the remainder bX\X is a space 

of countable type. Then R(X) S-Cy €lic£ (V) is not Mcompact 

for every neighbourhood V of y in X} is a space with count­

able base. 

Proof. We put Z = bX\ X and bZ = cX(Z). Clearly fi(X) = 

= h%\ Z. Since the space Z is of countable type, by the theo­

rem of Henriksen and Isbell [13] the space bZ\ Z is LindelfSf. 

Since bZ\ ZcX, R(X) = bZ\ Z is a Moore space. Hence 1(X) is 

a space with countable base. 

Theorem 4* Let X be a space metrizable by a complete 

metric. Let us also assume that X is periferally bicompact 

- i.e. there exists a base S in X such that Fr(U) is bicom­

pact for every U € Si . Then the following conditions are 

pairwise equivalent; a) X has a remainder which is a space 

of countable type| b) X has a remainder which is a p-space| 

c) X has a remainder which is a Moore spacer d) X has m 

metrizable remainder; e) X has a remainder with countable 

base; f) X has a remainder which is a countable space with 

countable base; g) X has a countable remainder. 

Proof. Clearly, f) =£• e) =>d) ==-.> c) = » b) =$>a). From 

a) it follows by means of Proposition 1 that R(X) is a space 

- 536 -



with countable base. Applying a theorem of f. Hoshina [141> 

we can now conclude that X has a countable remainder. Thus 

a) -==£ g). It remains to show that g) ==-> f) - this result be­

longs to G. Dimov C 53• For the sake of completeness we prove 

it below. Let P = bX\X. Since X is metrizable and P is coun­

table, from a result of T. Hoshina [141 it follows that the 

space c*£(P)nX is Lindel8f. Hence the space eX(P)nXhas 

a countable base. Then the space c*4(P) = (ci(PlnX)uP has 

a countable network. Since c*£(P) is ticompact, w(c*g(P)) « 

= nw(ci (P)) £ j#Q (see LSI). 

The following problems remain unsolved. 

1) Can one generalize Theorem 1, or any of the Corollaries 

1 - 1 1 , to the case of arbitrary finite number of summands? 

2) Can one prove Theorem l' and Corollaries 4 and 6 without 

the Martin's Axiom? 

3) Will the Corollary 8 remain true if we do not assume the 

Martin's Axiom and the negation of continuum-hypothesis? 

4) Is it true (without additional hypotheses) that every 

non-empty sequential bicompactum is first countable at some 

point? 

The problem 4 was for the first time formulated in [161. 

It is proved in [163 that if 2 ° <* 2 * then the answer to 

the question 4) is positive. From positive answer to the que­

stion 4) a positive answer to the question 2) would follow. 

5) When a countable space has a metrizable remainder? 

6) Let X be a perfectly normal bicompactum such that X -* 

= XuZ where I and Z are symmetrizable. Is it true then that 

X is metrizable? 
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7) Let X be a bicompaetum and X « Xu2L where X and Z are 

semi-stratifiable. Is it true then that X is sequential? 

8) Let X be a bicompaetum an! X = Yv Z where 1 and Z are 

6*-spaees. Is it true then that X is sequential? 

9) Can one construct (not using $ , CH or other additio­

nal set-theoretic principles) a bicompaetum X such that X -= 

a I y Z where 1 and Z are perfect spaces and X is not sequen­

tial? 

Ostaszewaki constructed a bicompaetum as in 9) under 

the principle $ (««• [183). 

It is worth noting that all the bicompaeta. involved in 

7) ,8) and 9) have countable tightness 133 • Hence the negati­

ve answer to 7) or positive answer to 9) would yield an abso­

lute example of a non-sequential bicompaetum of countable 

tightness. 
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