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ON BICOMPACTA WHICH ARE UNIONS OF TWO SUBSPACES OF A CERTAIN
TYPE
A.V. ARHANGEL’SKIY, Moscow

Abstract: Let X be a bicompact space, X = Yu Z, and
suppose that we have some information about Y and Z. What
can be said then about X ? About Fr (Y) ? The aim of the pre-
sent paper is to study this situation with the emphasis on
the following properties: sequentiality, metrizability, be-
ing a Moore space, being an Eberlein bicompactum. The re-
sults are applied to the investigation of properties of the
remainders of metrizable spaces,

Key words: Bicompact space, sequential space, Moore
space, ﬁBerIeln compact, space of countable type, uniform
base.

AMS: 54D30

We consider the following general problem., Let 7 be a
class of topological spaces and let X be a bicompact Haus-~
dorff space such that X = X,uX,, where X;, X, € P . What
can be said in this situation about properties of X ? This
question is aimed at clarifying what kind of bicompacta we
can get when constructing them by joining together two spa-
ces belonging to a certain "basic" class of spaces., The Ale-
xandroff’s "double circumference" is a classical example of
a non-metrizable bicompactum which is the union of two met-
rizable subspaces. In particular, we have in mind the fol-

lowing special question, Is it possible to construct a non=-
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sequential bicompactum of countable tightness as the union
of two rather simple spaces?

But the general problem referred to above is interes-
ting not only in connection with examples. The following
general question is a special case of it. When a space X
has a remainder of the same type? There are different ways
to make the question more concrete. First, find classes J°
of spaces such that every X e ® has a remainder in P .
When X has a remainder which is homeomorphic to X 7 (A re-
mainder of X is any space of the form bX\ X where bX is a
bicompact Hausdorff extension of X.) Given a class # of
spaces, how to characterize X € » such that some remainder
of X belongs to ° 7 When a metrizable space X has a met-
rizable remainder? When a Moore space has a remainder which
is a Moore space? When a symmetrizable space has a symmet-
rizable remainder? The same question can be formulated for

6 -spaces, for semi-stratifiable spaces etc.

All the spaces considered in this paper are assumed to
be completely regular. cf ... means"closure in X ", If we
write cf ..., it is to bex understood that the closure is
taken in the largest of all the spaces under consideration.
F* is the set of all positive integers; w(X) - the weight
of X; t(X) - the tightness of X; nw(X) - the networkweight
of X; c¢(X) - the Suslin number of X; % (F,X) - the pseudo-
character of F in X; % (F,X) - the character of F in X; d(X)
- the density of X; s8(X) - the spread of X. Definitions of

these notions can be found in [61].
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Let us remind some known results related to the gene-
ral problem under consideration. Let X be a bieompactum

and X = Yu Z, Then:
1) If w(Y) <« %, and w(Z) 2 #, then w(X) £ %,

(Ju. Smirnov [17])
2) If w(Y)4 v and w(Z) £ T then w(X) & ©

(A. Arhangel ‘skil, see [6])

3) If Y and Z are perfect spaces then t(X) £ #y
(A. Arhangel ‘skiY [ 3]) (perfect means that every closed set
is de)

4) If Y and Z are metrizable then X is a Fréchet-Ury-
sohn space [3]

5) If Y and Z are metrizable then X is an Eberlein
bicompactum (M.E. Rudin, E.A. Michael [9]).

Below we formulate and prove some new results closely
related to 3),4) and 5).

Theorem 1. Let [’ be a class of spaces such that the
following four conditions are satisfied:
1) every X €  is sequential; 2) if X €  , YcX and Y
is closed in X then Y ¢ ® ; 3) if Xe P and X is count-
ably compact then X is bicompact; 4) if Xe P and X is
bicompact then X is first countable at ¢dense set of points.
Further, let Z be a bicompact space such that 2 = X U X,
where X, € P and X, e P . Then Z is sequential.

Proof. We have: Z =X;vX,, X;e® , X, P . Con-

sider any Ac Z sequentially closed in Z. Then the set Ai
= AN xi is sequentially closed in X; and hence Ai‘is closed

in X; (condition 1)). Let us assume that A is not closed in
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Z. We fix zecf (A)\ A, It does not matter whether zeX,,
or z€X,. let zeX,. Since A, is closed in X,, we have
z¢cL(Ay). Let Oz be a neighbourhood of z in Z such that
cl(0z)nck (A;) = A . We put A’{ = ¢ (0z)n A. Clearly
A’i = c£ (0z)N Ay, the set A’:‘;_ is closed in Ay ami ze ct (A’z)\
\ A?i . Consider a set Mc A’{ such that M is discrete and clo-
sed in A’i . We shall show that the set M is finite. Suppose
that M is infinite. We can assume then that [M|= ¥, Obvious-
1y, M is closed in X,. Hence the set F = c£ (M)\ M is con-
tained in X,. As M is discrete, F is closed in Z. It fol-
lowe that F is bicompact. Since M is infinite, we have
F# A . It follows from 4) that x (x,F)< 4  for some xe
€F. On the other hand, ¥ (F,c£ (M)) £ (M| = 4 . Thus
X (F,cl (M) £ &, and from y (x,F) £, it follows that
1(x,cL (M) & #,. From this we infer that there exists a
sequence g in M converging to x. Since A is sequentially
closed in Z,we have xeA. From x€Fc X, it follows that xe€
€ A,. But this contradicts xec£(M)cck(0z)c 2\ ck (a5).
Hence M is finite ard the space A’;: is countably compact.
It follows from the conditions 2) and 3) that A’{ is bicom-
pact. Hence A’; is closed in Z and this contradicts z €
eck (A’i)\ A’:‘L‘ . ‘The proof is complete.

If the Martin’s Axiom MA is assumed (see [7]), then
condition 4) in Theorem 1 can be dropped.

Theorem 1°. Assume MA. let # be a class of spaces
such that: 1) each X € P is sequential; 2) if X e P ,

YcX and ¥ is closed in X then Y € ® ; 3) if X e P and
X is countably compact then X is bicompact. Let Z be a bi-
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compact space such that Z = X,u X, where X, & P and X, e
e P . Then Z is sequential.

Proof, We begin the argument as in the proof of Theo-
rem 1. To get a sequence g in M converging to some point
of F we use the following theorem of D.V. Ranchin [11]:
under MA every bicompactum which can be represented as the
union of a countable family of sequential bicompact subspa-
ces is sequential. Since F = c £ (M)\ M is sequential bicom-
pactum and M is countable, the theorem of Ranchin can be
applied to c.£ (M). Hence c£ (M) is sequential. Since M is
not closed in ¢ £ (M), it follows that “here exists a sequen-~
ce g in M converging to some point in c.£ (M)\ M = F.

Now we can complete the proof of Theorem 1’ exactly in
the same way as we have completed the proof of Theorem 1.

Corollary 1. Let X be a k-space and X = YuZ, where
Y and Z are both sequential and the diagonals in Y¥x Y and
Z»x Z are Gy ~sets. Then X is sequential.

Proof. It suffices to consider the case when X is bi-
compact. The class {? of all sequential spaces with G g -di-
agonal trivially satisfies the conditions 1) and 2) in Theo-
rem 1. From a theorem of J. Chaber (see [6]) it follows
that the conditions 3) and 4) are also satisfied by # .
Hence X is sequential by Theorem 1.

Corollary 2. If X is a k-space and X = YUZ where Y
and Z are both symmetrizable (see [10]) then X is sequen-~
tial,

Proof., We can assume that X is bicompact. For the

class P of all symmetrizable spaces the conditions 1) and
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2) of Theorem 1 are obviously true., It was shown ty S.I.
Nedev [10) that J? satisfies the condition 3) as well. It
is known also that every symmetrizable bicompactum is met-
rizable. Thus we can apply Theorem 1l and the space X is se-
quential.

If X is a Moore space, or 6-space [6], or semi-stra-
tifiable space (see [8]) or there exists a one-to-one con-
tinuous mapping of X onto & Moore space, then the diagonal
in XxX is & G -set. Hence we have

Corollary 3. Let X be a k-space and X = Yu Z. Then
in each of the following four cases the space X is sequen-
tial:

a) Y and Z are semi-stratifiable sequential spaces;

b) Y and Z are sequential 6 -spaces;

¢) Y and Z are Moore spaces;

d) Y and Z are sequential and each of them can be
mapped onto a Moore space by a one-to-one continuous mapp-
ing.

Corollary 4. If Martin’s Axiom holds then every k-spa-
ce which is the union of two r ealcompact sequential spaces
is sequential.

Proof. ‘It is easy to check that the class P of all
realcompact spaces satisfies all the four conditions of The-
orem 1,

If the summands Y and Z in X = YU Z are such that every
bicompact subspace of Y and every bicompact subspace of Z
satisfies the first axiom of countability at a dense set of
points, there is no need to assume the Martin’s Axiom. Thus

we have
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Corollary 5. Let X be a bicompactum and X = Yu Z whe-
re Y and Z are realcompact sequential spaces such that if
FcY or FcZ and F is bicompact then F is first countable
at a dense set of points, Then X is sequential.

A space X is called metalindeldf if every open cover-
ing of X can be refined by an open point-countable covering.
G. Aquaro proved (see [6]) that every metalindel®f countab-
ly compact space is bicompact.

Corollary 6. Assume Martin’s Axiom. If X is bicompact
and X = YuZ, where Y and Z are metalindeldf sequential spa-
ces then X is sequential.

Again we can drop the Martin’s Axiom if all bicompact
subspaces of Y and Z are first countable at a dense set of
points. In particular, we have

Corollary 7. If X is a k-space and X = YU Z where Y
and Z are spaces with a point-countable base then X is se-
quential.

Corollary 8. Assume Martin’s Axiom and the inequality

K
29 > "‘1' Iet X be a k-space and X = YU Z where Y and Z

are perfect. Then X is sequential.

Proof. Let us consider the class % of all perfect spa-
ces (X € P iff every closed set in X is a G -set). It is
clear that {® satisfies the conditions 1),2) and 4). It fol-
lows from MA and 24‘0 > .ﬁl that the condition 3) also holds
for P : this remarkatle theorem was proved by W.A.R. Weiss
{15). Theorem 1 now yields that X is sequentisal.

Definition 1 [2]). A space X is of countahle type if

for each bicompact Fc X there exists a bicompect F* ¢ X such
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that PcF* and g (FEX) & & .

The boundary Fr(A) of a set AcX in X is the set
ch(A)AncLl (X\NA). We consider the following general pro-
blem, Let X be a bicompactum and Ac X. Assume that a class
P of spaces is specified and A€ & , X\A e P . What
can be said then about Fr(a) 7

Theorem 2, Let X be a bicompactum and Yc X. Then the
following statements are true:

a) if Y and X\ Y are semi-stratifiable spaces of countab-
le type then the bicompactum Fr(Y) is perfectly normal and
hereditarily separable; b) if Y and X\ Y are 6 -spaces
(see [6]) of countable type then Fr(Y) is a metrizable bi-
compactum; ¢) if Y and X\ Y are Moore spaces then Fr(Y) is
a metrizable bicompactum. Furthermore, in each of the cases
a),b) and c¢), the space X\ Fr(Y) is locally bicompact 'and
locally metrizable, and X\ Fr(Y) belongs to the same class
as Y and Z.

Proof. First we shall prove the last assertion. We
have: X\Fr(Y) = (YNFr(Y))u ((X\Y)\ Fr(Y)), where
Y\ Fr(Y) and‘ (X\Y)\ Fr(Y) are disjoint, open and closed
sets in X\ Fr(Y). Besides, Y\ Fr(Y) is open in Y and
(X\NY)\ Pr(Y) is open in X\Y. To prove the last assertion
of Theorem 2 it suffices now to remind that every semi-stra-
tifiable bicompectum is metrizable [8]., Now let us prove a).

Since Y is of countable type and cX£ (Y) is bicompact,
it follows from a theorem of Hemriksen and Isbell [13] that

Y, = ¢c£(Y)\ Y is Lindeldf. Since Y,€Z = X\Y and Z is se~

1
mi-stratifiable, !1 is also semi-stratifiable . Applying the

- 532 -



results from [8] we conclude that Y, is hereditarily ILin-
deldf and hereditarily separatle. By the same argument we
show that the space Z, = c£(Z)\ Z (where Z = X\Y) is he-
reditarily Lindel3f and hereditarily separable. Hence
Fr(Y) = Y,u Z, is & hereditarily Lindeldf and hereditarily
separable space as well.

b) Every 6 -space is semi-stratifiable. Hence the ar-
gument in a) shows that Y, = c£(Y)\Y and 2, = c £ (X\TY)\
\ (X\Y) are Lindeldf spaces. Since each Lindeldf &-space
has a countable network, nw(Y;) € #, and nw(Z,) £ & . It
follows that Fr(Y) = Y,U Z, has a countable network. Now
Fr(Y) is a bicompactum. Hence w(Fr(Y)) = nw(Fr(Y)) & Ky
(see [6]1) and Fr(Y) is metrizable.

¢) Every Moore space is a 6-space [1]. Besidea, eve-
ry Moore space is a p-space., Since N.V, Velidko [4] has
shown that every p-space is a space of countable type, it
follows that every Moore space is a space of countatle type.
It remains to apply b). With the help of Theorem 2 we get
the following generalization of a theorem of M.E. Rudin and
E. Michael [9].

Theorem 3. If X is a bicompactum and X = YU Z where Y
and Z are spaces with uniform bases then X is an Eberlein
bicompactum,

Proof. From Theorem 2 b) it follows that Fr(Y) is a
bicompactum with countable base. We put X, = X\ Fr(Y), Y, =
= Y\ Fr(Y) and Z, = (X\Y)\ Fr(Y). Then (see the proof of
Theorem 2) X, = Y v Z,, ¥,nZ; = A , Y€, 2,2 and Y,
Zl are open and closed in Xl. It follows that the space xl
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has a uniform base. Since X is normal and the space Fr(Y)
has a countathle base, it is not difficult to construct a
countatle family 3 of open Pg ~sets in X such that - se-
parates the points of Fr(Y) (i.e. if x’,x" ‘e Fr(Y) and
x’# x”” then there exists U & 9 such that x’e U and

x""¢ U). We can fix a uniform base J3 in the space X, such
that [UJA Fr(Y) = A for each Ue B .Then each Ue B

is an open Fy -set in X and the family B is 6 -point-
-finite. We put :ﬁ' =AU y . Ten B is the union of

a countable family of point-finite systems of open Fyp -
-sets in X. One can easily check that .‘?3' To—separates
"the points of X - i.e. for any x*, x ‘€ X there exists

Ue B such that Un {x°,x"’} is a singleton. Applying
the Rosenthal’s Theorem [ 12] , we conclude that X is an

Eberlein bicompactum.

Example 1, Let us consider the well known Franklin’s
bicompactum X (see [3]). We have: X = Xju X, U X3 where X,
X, and X3 are discrete spaces, X3 is a singleton, X is coun-
tably infinite anl open in X and x2 is uncountable. We put
Y = Xlu x2 amd Z = X3. Then Y and Z are Moore spaces and X =
= Yu 2. Nevertheless, X is not an Eberlein bicompactum - it
is not even a Fréchet-Urysohn space. The'same example shows
that Theorem 2 is no longer true when X is decomposed into
three metrizable summands. Note that it is not a coincidence
that X is sequential - see Corollary 3, c).

Iet us consider the spaces Y’ = Xlu X3 and Z2° = X\Y’ =
= X,. The space Y  is countatle so that Y* is & &-space. The

space Z° is discrete so that Z° is metrizable. Hence Z° is a
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6 -space of countable type. On the other hand, c£(Y¥’) = X,
c£(2°) = XU Xy and Fr(Y') = c£ (¥)ncl(2”) = Hu Xy,

Thus Fr(Y’) is a non-metrizable bicompactum which is not even
perfectly normal, The reason (see Theorem 2 b)) for non-met-
rizability of Fr(Y’) is that Y’ is not a space of countable
type - all other conditions are satisfied by X, ¥* amd Z°.
This shows that Theorem 2 cannot be significantly improved.

Theorem 2 permits to get particularly strong conclusions
when the summands do not have points of local bicompactness
- or there are not too many such points.

Corollary 9. Let X be a bicompactum and X = Yu Z, where
Y and Z are semi-stratifiable spaces of countable type with-
out points of local bicompactness., Then X is a perfectly nor-
mal hereditarily separable bicompactum,

Proof. Clearly both Y and Z are everywhere dense in X,
Hence Fr(Y) = X, From Theorem 2 a) it follows that the bicom~
pactum X is perfectly normal and hereditarily separable.

Corollary 10. Let X be a bicompactum and X = Yu Z where
Y and Z are 6 -spaces of countable type such that YAZ = A .
Suppose also that Y and Z do not have points of local bicom-
pactness, Then the space X is metrizable.

Proof. We argue as in the proof of Corollary 9 and then
refer to Theorem 2 b).

Since every Moore space is a space of countable type and
every subspace of & Moore space is a Moore space, we have:

Corollary 11. Let X be a bicompactum armd X = Yu Z, whe-
re Y and Z are Moore spaces without points of local bicom-

pactness. Then X is metrizable.
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We can somewhat weaken the restrictions on Y and Z in
Corollaries 10 and 11 - it will suffice to assume that the
sets of all points of local bicompactness in Y and Z form
Lindel8f spaces.

Our considerations naturally lead to some curious sta-
tements about the remainders.

Proposition 1. Let Y be a Moore space and bY - a bicom-
pactification of Y such that the remainder bY\ Y is a space
of countable type. Then R(Y) ={yeY:c£ (V) is not bicompact
for every mneighbourhood V of y in Y} is a space with count-
able base.

Proof. We put 2 = bY\ Y and bZ = c¢£(2). Clearly R(Y) =
= bZ\ Z. Since the space Z is of countable type, by the theo-
rem of Henriksen and Isbell [13] the space bZ\ Z is Lindeldf.
Since bZ\ ZcY, R(Y) = bZ\ Z is a Moore space. Hence R(Y) is
a space with countable base,

Theorem 4. Let X be a space metrizable by a complete
metric. Let us also assume that X is periferally bicompact
- i,e. there exists a base 3 in X such that Fr(U) is bicom-
pact for every U € 53 . Then the following conditions are
pairwise equivalent: a) X has a remainder which is a space
of countable type; b) X has a remainder which is a p-space;
¢) X has a remainder which is a Moore space; d) X has a
metrizable remainder; e) X has a remainder with countable
base; f) X has a remainder which is a countatle space with
countatble base; g) X has a countable remainder.

Proof. Clearly, f) =>e) =>d)=>c)=)b)=>a). From

a) it follows by means of Proposition 1 that R(X) is a space
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with countable base. Applying a theorem of T. Hoshina [14],
we can now conclude that X has a countable remainder. Thus
a) => g). It remains to show that g) = f) - this result be-
longs to G. Dimov [5]. For the sake of completeness we prove
it below. Let P = bX\X., Since X is metrizable and P is coun-
table, from a result of T. Hoshina [14] it follows that the
space ¢ £(P)n X is Lindel¥f. Hence the space c.£ (P)n X has
a countable base. Then the space c£ (P) = (c £ (P)A X)U P has
a countable network. Since ¢ (P) is bticompact, w(c.8(P)) =
= nw(cl (P)) & £, (see [61]).

The following problems remain unsolved.
1) Can one generalize Theorem 1, or any of the Corollaries
1 - 11, to the case of arbitrary finite number of summanis?
2) Can one prove Theorem 1° and Corollaries 4 and 6 without
the Martin’s Axiom?
3) Will the Corollary 8 remain true if we do not assume the
Martin’s Axiom and the negation of continuum-hypothesis?
4) Is it true (without additional hypotheses) that every
non-empty sequential bicompactum is first countable at some
point?

The problem 4 was for the first time formulated in [161].
It is proved in [16] that if 2“" < 24&’1 then the answer to
the question 4) is positive., From positive answer to the que-
ation 4) a positive answer to the question 2) would follow.
5) When a countable space has a metrizable remainder?
6) Let X be a perfectly normal bicompactum such that X =
= YuZ where Y and Z are symmetrizable. Is it true then that

X is metrizable?

- 537 -



7) Let X be a bicompactum and X = YUZ where Y and Z are
semi~-stratifiable, Is it true then that X is sequential?

8) Let X be a bicompactum amd X = YU Z where Y and Z are

6 ~-spaces. Is it true then that X is sequential?

9) Can one construct (not using ¢ , CH or other additio-
nal set-theoretic principles) a bicompactum X such that X =
= YUZ where Y and Z are perfect spaces and X is not sequen~
tial?

Ostaszewski constructed a bicompactum as in 9) under
the principle ¢ (see [18]).

It is worth noting that all the bicompacta involved in
7),8) and 9) have countable tightness [3]. Hence the negati-
ve answer to 7) or positive answer to 9) would yield an abso-
lute example of a non-sequential bicompactum of countable

tightness,
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