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CONCERNING CESARI‘S THEOREMS
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Abstract: A version of Schauder’s theorem is used
for proving assertions slightly generalizing Cesari s re-
sults derived in [3]. As an application, the existence of
periodic solutions to a parabolic equation is proved.
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1. Introductiom. Some abstract existence theorems
modelled by assertions originating in Landesman-lazer ‘s
works have recently been derived by Cesari in [1],[2] and
[3]. In this paper a well-known version of Schauder ‘s Theo-
rem is used for proving two theorems which have been inspi-
red by Cesari’s results and which have many points in com-
mon with very abstract assertions derived in (8],

The first theorem is proved under a hit weaker assum-
ption than the related result of Cesari, and the second
theorem extends a result of Cesari as to the growth of the
admissible nonlinearity. The equations with a-nonlinear
term whose growth is either sublinear or asymptotically 1li-
near have been investigated in a great deal of papers, Abun-

dant bibliography on this subject can be found in [87],
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As an application of the abstract theorem, a simple
assertion on the existence of periodie solutions to a pa-
rabolie equation is proved.

It turns out that the used version of Schauder’s Theo-
rem is an appropriate tool for proving assertions of Lan-
desman-Lazer ‘s type since the rather complicated determina-
tiom of & set which has to be mapped into itself, as requi-
red by Schauder ‘s Theorem, is replaced by an assumption

which is very easy to be satisfied in this context.

Acknowledgment. The author is grateful to O. Ve jvoda
who attracted his attention to the paper [31.‘

2. Auxiliary Lemma. Let X and W be Banach spaces and
let RX’ R' be positive numbers. Let the space X><W be equip-

ped with the norm

lx,w)ll = max Cllxly, ReRG hwily).

Let us denote
M={(x,weX=W;lxllyeRy, lwl &R}
= {(x,w) e XxW; li(x,w)lll £Rp}.

Let &M be the boundary of M.

2,1, lemma. ILet T:M—> Xx<W be continuous and compact.
Suppose that
(2.2) {(x,w)e M; 3A > 1 such that T(x,w) = A(x,w)} = 0.
Then there is (x,w)e¢ M satisfying T(x,w) = (x,w).

Proof. Let a continuous mapping P:Xx W—> M be de-
fined by
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(x,w) if li(x,w)ll & By,
P(x,w) = {
By(x,w)/ lli(x,w)ll otherwise.

By Schauder s Theorem there exists (x,w)e M satisfying
PT(x,w) = (x,w). In virtue of (2.2) we have PT(x,w) =

= T(x,w) and this completes the proof.

3. Abstract theorems, The notation wused in this
section is taken over from [3]. Let X be a real Hilbert
space whose inner product is denoted by <, > amni norm
by el .

Let E:D(E)~—> X, D(E)c X, be a linear operator, l£dim W<
<+ 00 , W=Xker E and let N be a continuous (nonlinear)
operator. Let P be the orthogonal projection onto W. ILet
us denote X, = (I-P)X. Let H:X;—> D(E)NX; be a linear
operator, compact as a mapping of Xl into X. Let us suppo-
se that E, P and H satisfy:

(1) X, =4{EBx; xeD(E)} ,

(ii) if xe D(E), then HEx = (I-P)x.

(iii) If xeX,, then EHx = x,
let A:X—> X be a continuous operator satisfying [Axll &
2w(llxll ) for all x& X with some nondecreasing function

@ :R'—> R', Finally, setting L = IH|| , we have the theo-

rem.

3.1, Theorem. ILet O< k<1l., Besides the hypotheses lis-
ted above let the following assumptioms be satisfied.

(i) There are constants J,g0, le 0 such that
UNxll& I+ J) Ix) X for all x e X.
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(ii) There are constants Roz 0, & >0, K°> Jo' K1>
>J, such that {N(w+Hx),w)#& - ¢ llwll for all xeX and we
¢ W satisfying llwlZ R, and lx I & K+ K; llwil .

Then there exists o¢ ;>0 and C>0 such that, for every real

o, lwl€ o , the equation

(3.2) Ex + «Ax = Nx

has a solution x ¢ D(E) with lIxll & C.

3.3. Remark. Theorem 3.1 is a slightly changed and
weakened form of Theorem IV of {3].

Proaf of Theorem 3.1. It is easy to see, cf.[2], that
instead of solving (3.2) one can investigate the existence

of a fixed point of the mapping T = (Tl,’l‘z):xxw—> XxW

given by
(3.4) T,(x,w) = w + H(I-P)(- « Ax + Nx),
(3.5) T,(x,w) = w + P(~ « Ax + NT,(x,w)).

Let % > 0 and » > O satisfy K & 2 + J_ and J(1+»)X £
éKl. Let us choose Ry such that

-1 -1
Rx(l+1>) =R0’ Rx(1+ »)T o+ K, + mlR§é§
and denote Ry = Ry/(1+v). Let

(3.6) &y = (@ (Rp) T min(ae, €).

Let W be equipped with the Hilbert space structure induced
by X with the same notation of the norm and the inner pro-

duct. We denote

M = {(x,w)eXW; Ix)l &Ry, llwl €Rg3 .
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We will show that the mapping T satisfies (2.2), Let us sup-
pose there is (x,w) € &M and A > 1 such that

(3.7)  Ty(x,w) = Ax,

(3.8)  Tylx,w) = Aw,
Then the two cases will be distinguished:
A) lxl =Ry, lwl& Ry, B) lxl<Ry, lwl= R
In case (A) we have
T (xw)l & By + aLew(Ry) + L, + L7y Ixl X g
£Ry+ Loe+ LI + LKlkgéRx(h »7L s
+ IK + IK1R§ éRx.
This contradicts (3.7). In case (B) we have T (x,w) = w +
+ Hy, where
Iyl & @ (Ry) + I+ J; Iz X &
g+ I+ IBE &
£k, +J 1+ »)F [R(1+ )11 K g
£k, +KRE =K +K lwlk
Thus, by the assumption (ii) we obtain
{Tolx,w),w) = [lwll 2 - Ax,w) + ( NTy(x,w),w) &
£ B+ of Ry (Ry) = eRER,
since o, £ €/cw (Ry). This relation contradicts (3.8). Hen-

ce T satisfies (2.2) and Lemma 2.1 can be applied to the
mepping T on the set M. This completes the proof.

3.9. Remark. Using (3.4), we easily derive that every
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solution x to (3.2) given by the preceding theorem satis-
fies x-HzeW, Il x-Hz || € By for some zeX, Izl € R, = se+ J  +

+ vIlRl;. The conatants R' and RZ depend on the operators E
and N but not on the operator A.

Under the assumptions and notations given at the be-
ginning of this section we can prove a theorem which deals

with another class of admissible nonlimearities,

3.10. Theorem. Let the following assumptions be satis-
fied.

(1) There are constants J %0, J;>0 such that
INx llﬁJo + Jy Ixll for all xeX.
(ii) There exists » > 1 such that LJ;(1+»)<1,
(iii) There are constants R,Z0, &> 0, K >J  such
that (N(w+Hx),w)€ - & lwll for all xeX, weW satisfying
Iwl2ZR and Ixh&K  + J;(1+») flwl .
Then there exists cc°>0 and C >0 such that, for every real

o, l| ® e, theeuation Ex + ocAx = Nx has a solution
xe D(E) with [Ixl &C.

Proof. Let se satisfy K % ae+ J . We choose Ry such
that
Rx(i+v)'lzno,
Ry(1+ )71 + 1K, + LI Ry&Ry.
These inequalities can be satisfied since (1+1>)—1 + LJy &

&2(1+») 1<, Putting Ry = Ry/(1+») and proceeding along
the same lines as in the proof of Theorem 3.1 we will comp-

lete the proof of this theorem.
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3.11. Remark. By applying Lemma 2.1 one can also pro-
ve the other theorems in [1],[2] and [3] as well as some

further theorems of Landesman-Lazer’s type, e.g. [4],L51].

3.12. Remark. Numerous abstract results connected

with theorems of Landesman-lazer’s type can be found in [8].

4. Example. In this section we will prove the exis-
tence of periodic solutions to a parabolic equation by ap-
plying Theorem 3.1, We will denote by Sl, Z and Z' the wnit
cirele in Rz, the sets of integers and positive integers
respectively. For brevity we will write Q = st x (0, o) and
X= LZ(Q). By Y we denote the closure of all functions x =
= x(t,§ ) eC®(Q) vanishing at § = 0 and § = & in the norm

Ix Clix, il 2, + lxee Il 2 )1/2
= + .
Ty Xy 12 13 2

Equivalently, the space Y is the space of all functions x
which can be written in the form

x(t ) = = x: o, etdt sin k
0% sezxent ik £

where X5,k =%X.jx and the rumber

2, 4.2 2
2 = (F+eDxs |
X jeZ,xezt Jrk

is finite (and equal to lx |l %). This implies that the iden~
tity map of Y into X is compact amnd, further, that Yc C(Q)
and x|l C‘Cs Ixll y for all xeY with a certain constant
CS.

Let h:R—> R be & rontinuous function, which for some % >0
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satisfies

a) h is monotone on (~c,~%) U(R,+m),
b) h(x)x20 for all xe (-0,-}) U (R,+00),

¢) 1lim h(x) = +00 , lim h(x) = - 00,
X + 00 X4~

~d) for some O<k<1l and h >0, hy >0, lh(x)léh°+hllxlk
for all xeR.

Let a = a(t, § ,x):Qx R—> R be measurable in (t,§ ), conti-
nuous in x and satisfy

(4.1) la(t,§,x)| & & (Ix|) for all (t,§,x) € QxR, where
& :R'—> R  is a nondecreasing function.

We will now prove an assertion which is closely relat-
ed to an analogous result in [6], Sec.6.6 and which for o=

= 0 follows from Theorem V.3 of [7] as a very special case.

4.2, Theorem. Let the functions h and a satisfy all
the hypotheses formulated above in this section. Let me Z,
m>1, Let peLz(Q). Then to every « sufficiently close to

0, there exists xe Y satisfying

(4.3)  x, - xpe - 1°x + wa(t, §,x) + hix) = p(t,§) for
almost all (t,§ )& Rx(0,s),

(4.4) x(t,0) = x(t,ar) =0, teR,

(4.5) x(t+2='r,g) = x(t,f), (t,g)c Rx(0,ar).

Proof. let us denote

2 .
Ex = x, - X, - 0“x, W = span {sin mx
t gi ’ P 3

ard P the orthogonal projection onto W. Then X, = (I-P)X =
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EY. G1venxeX,1.e.x= 2 b ei‘jt 8in kx, X. =

’:E_j X’ 2!:- k\2< + 00 , we define a bounded linear ope-

rator H:X;—> Y by (Hx)(t ) = = (i.]+k 2)
- § SR £0,m) ik
eIt gin k§

Obviously, the mapping H considered as a mapping of Xl into
X satisfies the assumptiomns (ii) and (iii) of Section 3.
This mapping is compact since the identity map of Y into X
is compact.

Further we set Nx = p(t,§ ) - h(x). This operator sa-
tisfies hypothesis (i) of Theorem 3.l. Let positive numbers
K;, Ki and € be chosen arbitrarily. Then hypothesis (ii)
will be verified as soon as we have shown that there is
r,> O such that, for all rZr, yeC@), iyl cEKg + K,irk,

we have

(4.6) V(r) = h(r sinm§ + y(t,§)), sinm¢ >L2 >F,
(4.7) < h(-r sin m§ + y(t,§)), -sin ng)Lz >T.

To this end we define, 7 > 0

b

s = 4(t,§)e Q; sinn§ > 71,

o]

_={(t,§)eQ, sinmf< -7,
0, =4(t,§)¢Q, lsinmgl & 7} .

For btrevity we set ¢ (r) = K; + K]'_r and ® = max {Inx)I,
xl&®{. Since m>1 we ean fix 7 > O such that

(4.8) min (meas f. , meas S1_)>meas £ .
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Let us choose ? sueh that rZ 2 implies nr - q)(r)%? and
g (r)Z %,
Now, let rZf and let ye C(Q) satisfy Iyl o £¢(r). As

‘.{t'l [ h(r sin n§ +y(t,f)) sin nf af dt 2
©
z 7 4min (-E,h(-—g(r))) - max (I'Z,h(g;(r)))} meas .Q.o,

we have

Vir)z [ [higr - Iy, g))nagat -
'a'+

_f fh(- e+ lyt, §)nag at +
.

bh(r sin m§ + y(t,§)) =i afdat z
l'j-‘ﬂ-of r sinmf + y(t,§ slnm? f
Z27 {higr - ¢ (r)) meas 2, - mx(ﬁ',h(g(r)))meas.ﬁ.oh
+ m {-h(= 3 r+q(r)) meas _ + min(X,h(- g(r)))meas 2 7.

By (4.8) this yields lim V(r)=+ 0o . Hence (4.6) is ve-
r->+00
rified for all sufficiently large r. The estimate (4.7) can

be proved similarly.

By Remark 3.9 the solutions of the equation
(4-9) Ex + K«Ax = Nx

with the operators B and N defined above will satisfy the

estimate

xll ghBaa™" R+ sup {iHall o izl g &R}

no matter how the operator A is defined. Hence we can put
Ax(t,§ ) = ap(t, § ,x(t, §))

with ag(t, § ,x) = max (- & (B), min (& (B), a(t, § yx)))e

The estimate of |l x| ¢ Just mentioned shows that solutions
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te equation (4.9) guaranteed by Theorem 3.1 satisfy (4.3) -
(4.5). This completes the proof.

4,10, Remark. Let a continuous function h:R—> R sa-
tisfy hypotheses a) - d) formulated at the beginning of this
section and let there exist a positive number A such that
Ah(x) & - h(~-x) &A™ 1h(x) for all x&%. Then Theorem 4.2 holds

also for m = 1,

4,11, Remark. If h grows linearly, i.e. if it satis-
fies |h(x)l € h  + h,Ixl, x€R, h_, h;>0, instead of d),
then Theorem 4.2 holds provided h, is sufficiently small.
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