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COMШNTATXONES MATffiMATIGAE ШfI¥EШITATIS CAROLШAl 

19,3 (1978) 

CONGErøІNG CESARI#S THEOШIS 

M. ŠTІШÐЃ, P r a ћ a 

Abstract; A version of Schauder s theorem is used 
for proving assertions slightly generalizing Cesari *s re­
sults derived in [3D. As an application- the existence of 
periodic solutions to a parabolic equation is proved. 

Key words; Nonlinear equations, periodic solutions 
of parabolic equations. 
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1. Introduction. £|ome abstract existence theorems 

modelled by assertions originating in Landesman-Lazer #s 

works have recently been derived by Cesari in [13,[21 and 

[3]. In this paper a well-known version of Schauder#s Theo­

rem is used for proving two theorems which have been inspi­

red by Cesari #s results and which have many points in com­

mon with very abstract assertions derived in C83. 

The first theorem is proved under a lit weaker assum­

ption than the related result of Cesari, and the second 

theorem extends a result of Cesari as to the growth of the 

admissible nonlinearity. The equations with a»nonlinear 

term whose growth is either sublinear ©r asymptotically li­

near have been investigated in a great deal of papers. Abun­

dant bibliography on this subject can be found in i&l • 
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As an application of the abstract theorem, a simple 

assertion on the existence of periodic solutions to a pa­

rabolic equation is proved. 

It turns out that the used version of Schauder'e Theo­

rem is an appropriate tool for proving assertions of Lan-

desman-Lazer #s type since the rather complicated determina­

tion of a. set which has to be mapped into itself, as requi­

red by Sehauder'a Theorem, is replaced l.y an assumption 

which is very easy to be satisfied in this context. 

Acknowledgment. Hie author is grateful to 0. fcjvoda 

who attracted his attention to the paper [3]. 

2. Auxiliary Lemma. Let X and W be Bsnach spaces and 

let IL.f R« be positive numbers. Let the space Ixl be equip­

ped with the norm 

)ii(xfw)||| - max C II x II x» B ^ 1 1 w I w ) . 

Let us denote 

M «|(x fw)6XHW| Ilxit x£% Uwl-^4^} 

« 4 (xfw) s XnW| ill(xfw)III h % I . 

Let 0M be the boundary of M. 

2.1. Lemma. Let T t M — • X K I be continuous and compact. 

Suppose that 

(2.2) 4(x,w)c 0Mf MX > 1 such that T(x,w) » ^(xfw)f » 0. 

Then there is (x,w)# M satisfying T(x,w) * (x,w). 

Proof. Let a continuous mapping ^P:X>c W — * M be de­

fined by 
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r(xfw) if lit(xfw)!||6 E ^ 

fP(xfw) • J 

I Bg(x,w)/ |||(xfw)||| otherwise. 

By Sehauder's Theorem there exists (x,w)# M satisfying 

$»T(xfw) = (xfw). In virtue of (2.2) we have ^T(xfw) -» 

= T(x,w) ami this completes the proof. 

3. Abstract theorems. The notation used in this 

section is taken over from C3J. Let X be a real Hilbert 

space whose inner product is denoted by < , > aid norm 

b y H . II . 

Let !:D(E)—* X, D(l) c X, be a linear operator, 16dim W-c 

< + oo , W • ker 1 and let N be a continuous (nonlinear) 

operator. Let P be the orthogonal projection onto W. Let 

us denote X1 » (I-P)X. Let UiX^—t* D{E)a%1 be a linear 

operator, compact as a mapping of X* into X. Let us suppo­

se that lf P and H satisfy: 

(i) X1 M i x ! x«D(I)} f 

(ii) if X€B(I), then HEx = il^)x. 

Ciii) If x i X l f then IHx « x. 

Let A.X—-*X be a continuous operator sa t is fying PAxl fe 

6 41 ( II xII ) for a l l xcX with some nondecreasing function 

co :!**—t* H+. F ina l ly , s e t t i ng L = |IH|| f we have the theo­

rem. 

3»1* Theorem. Let 0 < k < l . Besides the hypotheses l i s ­

ted above l e t the following assumptions be s a t i s f i e d . 

( i ) There are constants J J O , J-.5 0 such tha t 

IINx II is JQ+ Jx Hz|l k for a l l x € X. 
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( i i ) There are constants R SO, e >• 0, K > J , K*> 

> ^ such tha t <N(w+Hx) ,w> 6 - e II w Ii for a l l xeX and wc 

& W sat is fying II w II S BQ and ||x II 6 KQ+ K^ |l w II k . 

Then there ex is t s ot > 0 and C>0 such tha t , for every r e a l 

oC f l*ol 4s GCQ9 the equation 

(3.2) £x + ©cAx =* Nx 

has a solution xeD(l) with llxli 4 C» 

3*3. Remark. Theorem 3.1 is a slightly changed and 

weakened form of Theorem 1? of C3]« 

Proof of Theorem 3»1. It is easy to see, cf.C2Jf that 

instead of solving (3.2) one can investigate the* existence 

of a fixed point of the mapping T =- (T-,, Tg) : X * W — • Xx-W 

given by 

(3.4) T-^Xjw) = w + HU-PK- «oAx + Nx), 

(3.5) T2(x,w) » w + P(- 4KSAX + NT^x,*)). 

Let ae > 0 and ^ > 0 satisfy ZQ% ae + J and J-iCl* ̂  ) k -6 

6 K1# Let us choose R^ such that 

Rx(l+i>)""
1.5Rof 1^(1+i>)"

1 + IX0 + m ^ i J ^ 

and denote 1^ = R ^ ( l + 0 ) . Let 

(3.6) 06Q = ( ^ ( R ^ ) ) " 1 min(^€f S ) . 

Let W be equipped with the Hilbert space s t ruc ture induced 

by X with the same notat ion of the norm and the inner pro­

duct . We denote 

M * \ (x-rw) 6 !>*¥.; lix II k Rx, II w il k \ \ . 
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We will show that the mapping T satisfies (2.2). Let us sup­

pose there is (xfw) e &M and X> 1 such that 

(3 .7 ) T1(x fw) « A x f 

(3.8) T2(x tw) * Aw. 

Then the two cases wi l l be dist inguished; 

A) llxll = Bj, llwifr % f B) I t x i U l ^ | )w t l* fy . 

In case (A) we have 

IIT^x-wMl 6 ^ + d^LwCHj) + U 0 + Wx llxll k 4 

•4 Rw + L*e + LJ0 + L K ^ j i i ^ t l + ^ r 1 + 

+ J&Q + m i ^ 6 R x . 

This contradicts (3 .7 ) . In case (B) we have T^(x,w) * w + 

+ Hyf where 

l y l 4 o606^(%) + J 0 + % l!xllk 4 

i * + J 0 + J ^ A 

* Ko * J l ( 1 + >>>' f % ( 1 * *>)""1J k ^ 

A K0 + K ^ • Kft + l - j jw I k . 

Thus, by the assumption ( i i ) we obtain 

<T2(x fw) fw> « | w | 2 -ec< Ax,w> + < NT1(xfw)fw> 4 

4 i ^ + oi0^6>(Rg) - e i ^ i ^ f 

since ©c0 .4 e/<<5 (%)• -Chi-* relation contradicts (3.8). Hen­

ce T satisfies (2.2) and Lemmat 2.1 can be applied to the 

mapping T on the set M. This completes the proof. 

3.9. Remark. Using (3.4) f we easily derive that every 
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solution x to (3.2) given by the preceding theorem satis­

fies x-Hm c W, 11 x-Hls 11 4 Eg for some zcl. t .2 1 4 Eg v ae+ *J>0 + 

+ JLBg. The constants R.- and Eg depend on the operators 1 

and N but not on the operator A. 

Under the assumptions and notations given at the be­

ginning of this section we can prove a theorem which deals 

with another class of admissible nonlimearities. 

3«10. Theorem. Let the following assumptions be satis­

fied. 

(i) There are constants J 2 0, J-,>0 such that 

IINx II 4 J^ + J- II x I for all x I X. 0 x 

( i i ) There exis ts >> > 1 such that U 1 ( 1 + J > } < 1 . 

( i i i ) There are constants R ^ 0 , £> > 0, KQ> JQ such 

tha t (N(w+Hx),w)4 - % |(w II for a l l x e X , w € l sat isfying 

I w 1 2 R0 and II x II 4 KQ + 0^(1+ p ) || w I . 

Then there exis ts oc >Q and C >0 such tha t , for every r e a l 

oc f I 06 I 4 oc f the equation Bx 4- c&Ax = Nx has a .solution 

xeD(E) with || x | 4 C 

Proof. Let ae sa t is fy KQ S te+ J . We choose B^ such 

that 

^(i+^>)"12H0, 

%(!+ ^ ) " 1 + LK:0 + I ^ 1 % 4 H X . 

Hiese inequalities can be satisfied since (l+»)~ + LJ^ 4 

4 2(1+ P)~1< 1. Putting R^ = 1^/(1+i>) and proceeding along 

the same lines as in the proof of Theorem 3.1 we will comp­

lete the proof of this theorem. 
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3.11# Remark. By applying Lemma 2.1 one can also pro­

ve the other theorems in CD ,123 and 13] as well as some 

further theorems of Landesman-Lazer'a type, e.g. t4Jf£53. 

3*12. Remark. Numerous abstract results connected 

with theorems of Landesman-Lazer 's type can be found in C8l. 

4» Example. In this section we will prove the exis­

tence of periodic solutions to a parabolic equation by ap­

plying theorem 3.1. ¥e will denote by S , Z and Z the unit 
2 circle in TR , the sets of integers and positive integers 

respectively. For brevity we will write Q = S x (0, jtr) and 

X » If (Q)# By 1 we denote the closure of all functions x * 

= x(tf | ) € QW(U) vanishing at f » 0 and | « r in the norm 

9 0 1/2 
l l x l z * t IIXtil \ • IIXjj ld

2) . 

Squivalently, the space I is the space of all functions x 

which can be written in the form 

x(t»f ) • ^ x . e 1 ^ sin k| , 
5 jiZ»kiZ •"* 

where x« v
 s x * . and the number 

Jl 5! + C o 2 - * 4 ^ J 2 

" jfeZ.ktZ J»K 

2 
is f i n i t e (ani equal to l | xHj ) . This implies that the iden­

t i t y map of I into X i s compact ard, fur ther , tha t TcC(f ) 

and II x II g £ Cg II x II £ for a l l x e 1 with a cer ta in constant 

V 
Let h:l—*• R be e continuous function, which for some x>0 
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satisfies 
a) h i s monotone on (-«?,-!.) U(&$+i®)t 

b) h ( x ) x * 0 for a l l x * ( - » , - * ) tf (2,+co), 

c) lim h(x) = •¥ oo , lim h(x) = • oo 9 
X-» + CP x-»-co 

d) for some 0 < k < l and h Q > 0 f h - ^ 0 , lh(x)l 6 h ^ h ^ j x l * 

for a l l x€ R. 

Let a - a ( t f | ,x) :QxB—» B be measurable in ( t f | ) f cont i ­

nuous in x and sa t i s fy 

(4.1) t a ( t f f f x ) | h £>( |xl) for a l l ( t , | f x ) £ Q x B , where 

2> :B •—** B i s a nondecreasing function. 

We wi l l now prove an asser t ion which i s closely r e l a t ­

ed to an analogous r e s u l t in l 6 j f Sec*6.6 and which for oc = 

= 0 follows from Theorem ¥.3 of ill as a very special case. 

4»2. Theorem, Let the functions h and a sa t i s fy a l l 

the hypotheses formulated above in t h i s sect ion. Let m£Zf 

2 m > l . Let p i L (Q). Then to every «c- suff icient ly close to 

0f there ex is t s xcX sat isfying 

(4.3) x t - x- f - m2x + ooa(t f | fx) + h(x) • p ( t , f ) for 

almost a l l ( t , f ) 6 B>c(Of «*r), 

(4.4) x(t fO) = x ( t f s r ) = 0 f t i f i , 

(4.5) x ( t + 2 # r f | ) « x ( t f | ) f ( t , | ) € B x ( O f t r ) . 

Proof. Let us denote 
2 Ex * x^ - Xg- - m xf W * span 4 s in mx } 

and P the orthogonal projection onto W. Then X, « (I-P)X = 
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= I I . Given x e X 1 t i . e . x « £ x . v e 1 J t s in kxf x . v = 

~ * -1 k* 2l I x . . I < 4- QD f we define a bounded l i nea r ope­

r a t o r HsX.—> 1 by (HxHi.f ) « £ ( i j*lc2-m2) - 1 x . . 

e 1 ^ s in k f . 

Obviously, the mapping H considered as a mapping of X-, into 

X s a t i s f i e s the assumptions ( i i ) and ( i i i ) of Section 3 . 

This mapping i s compact since the ident i ty map of X in to X 

i s compact. 

further we se t Nx s p ( t f | ) - h ( x ) . This operator sa ­

t i s f i e s hypothesis ( i ) of Theorem 3 . 1 . Let posi t ive numbers 

K'f K' and e be chosen a r b i t r a r i l y . Then hypothesis ( i i ) 

wi l l be ver i f ied as soon as we have shown that there i s 

r 0 > O such tha t , for a l l rtr0$ ycC(Q) f l lyl Q£sK^ * K£rk
f 

we have 

(4.6) ? ( r ) s < h ( r s in mf + y ( t f f ) ) , s in mf > 2 > g , 
L 

(4.7) < h ( - r s in mf + y ( t , f ) ) , - s i n mf > 2 > W . 

L 

To t h i s end we define, % ^ 0 

• % s 4Ctf f )c Q| sin mf > ^ 1 t 

H ^ • 4 ( t , f )&% s i n m f - c - ^ 1 * 

«-\ s i ( t , f ) *Q , l a in » f I * %\ • 

For brevity we set cp(r) * K̂  + K^r and % » max { ( h ( x ) | f 

1x14$ J . Since m > l we ean f ix % > 0 euch that 

(4.8) min (mea© JL^f meas i l ^ )>meas HQ* 
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Let us choose r* such that r5r* implies f^r - y ( r ) 2 x and 

cf ( r ) S x. 

Now, l i t r ^ r and l e t ycC(Q) sa t i s fy Py ft Q ii <p(r). km 

f f h ( r s i n mf + y ( t f f )) s in mf df dt 2 

2?i4min ( - K , h ( - y ( r ) ) ) - max (K,h( y ( r ) ) ) } meas HQ$ 

we have 

V ( r ) s J fH%r - | y ( t , f ) | ) i j d f dt -

- / / h ( - ^ r + | y ( t , f ) t ) ^ d | d t + 

+ j J h(r s in mf + y ( t , f )) s in mf d^ dt 2 

g ^ 4 h ( ^ r - <f (if)) meas J l ^ - max(Kfh( ^(r)))meas-Q-0f + 

4. <*| {-h(~ 1 r + ^ ( r ) ) measjl^ + min(K fh(-J?(r)))measi l 0 l . 

By (4*8) t h i s y ie lds lim ¥(r)»* 00 » Hence (4.6) i s ve-

r i f i e d for a l l suff ic ient ly large r . The estimate (4.7) can 

be proved! s imi la r ly . 

By Bemark 3.9 the solut ions of the equation 

(4.9) Ix + e&Ax » Nx 

with the operators S and N defined above will satisfy the 

estimate 

Uxl l C l lB -Br"" 1 i ^ + SUP 4« HZ II CJ llzl y £ \ \ 

no matter how the operator A is defined. Hence we can put 

Ax(t,f ) * a^t, f fx(tf f )) 

with aB(t,f fx) * max (- 5 (B)f min (2»(B)f a(tf f fx))). 

The estimate of II x 1 Q just mentioned shows that solutions 
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t@ equation (4.9) guaranteed by Theorem 3.1 satisfy (4.3) -

(4.5)• This completes the proof. 

4-10* Remark. Let a continuous function h:R—> R sa­

tisfy hypotheses a) ~ d) formulated at the beginning of this 

section and let there exist a positive number 4 such that 

Ah(x)4- h(-x)iA"\(x) for all xSx. Then Theorem 4.2 holds 

also for m = 1. 

4.11 • Remark. If h grows linearly, i.e. if it satis­

fies .h(:x)t 4 h 0 + h-jjxl, xeH, hQ, h-^O, instead of d), 

then Kieorem 4.2 holds provided h-̂  is sufficiently small. 
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