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FACTORIZATION IN THE ALGEBRA OF RAPIDLY DECREASING FUNCTIONS
OR Ry

Hana PETZELTOVAK and Pavla VRBOVK, Prahs

Abstract: A factorizatiom theorem which is an analogy
of factorization theorems in Banach algebras is proved im
the algebra of rapidly deereasing functions on %’ The re-

sult is closely related to investigations of existence of
factorizaion in Fréehet algebras with an approximate unit.

Key words: Rapidly decreasing function, approximate
unit, F‘%&:Eet algebra. ’

ANS: 46E25

Let % be n-dimensional Euclidean space. As usual, de-
note by 1t] = (2 +..u+ t2)1/2 for ¢ = (t),...,t )€ R, and

Ikt
0 x
Dkx =

T for xe C¥(R,), k = (ky,.+0,k )20,
1.0 "y,

Ikl = kj +...+ ko Let us recall that i = (yeeepif)ék =
= (Ky,000,k,) Dy definition if i,6 ky, dpbky,ees, i 6k
k kl kn
and 0 = (0,0,...,0). As usual,(_)=( ) ...( .
iy in
We shall denote by ¢ the subalgetra of C®(R;) con-
sisting of all functions rapidly decreasing at infinity, i.e.
xX€ C”(%): sup \tlj\(Dkx) (t)l< 00 for all non-
g - teR,

negative integers j and multiindices k
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xe C¥R ): sup 1t3(0*x) (t) 1< 0 for all multi-
te
= . . indices
. i i
. - 1 n
i,kz0 (t' =t ceety?)
with the topology generated ly the system of pseudonorms

lxlgy = max (219 100M0 (0] .
teR,

Concerning the problem of factorization in projective
limits of Banach algebras there exists an approximate unit
in the algebra ¥ which may be regarded as the projective
limit of Banaeh algebras gjk consisting of all functions
from C‘”(l%) for which the norm Oﬁfil lji is finite, Na-
mely, the system of characteristiclz-tunctions of D =
= (teR, Itl&€k) (k = 1,2,...) in R smoothened by convo-
lution with suitable functions from C%(R,) forms an ap-
proximate unit, unfortunately, this unit is unbounded in
each 9.51(- It turns out that the iterative process whieh
often provides a positive solution in many proofs of fac-
torization theorems (see, for example, [1] - [9]) fails to
converge here., Nevertheless, it is possible to prove exis-
tence of power factorization on bounded subsets of & with

the help of special properties of the algebra & .

1. Preliminaries. Denote by w the function w(t) =1t
for O4#teR . The function w is of class C%, Since
dwP

at,

by induction that

(t) = p.wp'z(t). ty for every integer p, it follows

(1) (WP)(t) = = c(1,k,p) (¢|P-IEI=I121 2
0414k
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s
If &% = (7,000, ) (8 = 1,2,...,0) then (D wP)(1) =

]
= = c(l,k,p)(p - 1kl - 11()[¢1P-1ki=111-2 1%e™ |
0414k

s
v = e(x,p) 1.t PTIEI T penee, ir pso,
e® 14k
le(1l,k + ¢,p)l& max (2p,3/k|). max |c(r,k,p)!. The last
Qsrsk
inequality can be easily proved by considering all possible
cases. This, together with ¢(0,0,p) = 1, yields

le(1,k,p) | ¢ (max (2p,31k| )Xl

| (DWP) (£)) £ a pE g P=1El eor 40, x20, p>o.

1.1. Lemma. There exist positive econstants C, C, (kZz 0)
such that, for every sequence (m(p))?::l of natural numbers
with m(p + 1) - m(p)Z 5 for p = 1,2,... and m(1)2Z 3, there
exists a positive function be C®(R)) satisfying:

° b(t) =1 for |tl&m(1) - 2
b(t) = wP(t) = 1t|P for (tle<m(p) +2, m(p + 1) - 2

1

(3) 2° (D) (t)| &Cpim(p) + 2)P

(4)  b(t)zCe(m(p) - 2)P72
for t)em(p) - 2,m(p) +2>, p=1,2,..., k20
3° vle o,

Proof. Let (m(p));‘;l be a sequence of natural numbers
satisfying m(p + 1) - m(p)Z5 (p = 1,2,...) and m(1)2= 3. We
shall construct a function b having the required properties
and we shall show that the corresponding constants Ck' c
do not depend on the choice of (m(p));.l. Let & be a posi-
tive function defined by
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1 for |t|em(l)
a(t) =

1t1P for |t| ¢ (m(p),m(p + 1)) P=1,2,...

We shall modify the function a So as to obtain a C%®
function. Take a function ¢ & C¥(R ) such that G £ ¢ £« 1,
@ = 1 in a neighbourhood of zero, supp ¢ is equal to the
unit dise D1 in Rn’ @ positive inside D1 and Dkga = 0 on
aDl for all nonnegative multiindices k. Denote by Nk =
= max I(Dkga)(t)\ (kz0)., Let @, be the function defined
teR P
as follows

t
g(t - m(p) -l—ti-) for t£0
@ (t) {

[v] for t = 0

Clearly, the function %p is a well defined function of

class C%® and supp 9p ={t:m(p) - L€ |tlam(p) + 1} . We
shall show that, for every k2 O, there exist constants Kk
(depending on k only) such that :t‘iil (p* <_pp)(t)\£ K, for

all k20 and p = 1,2,... . Denote @{(t) = t; (1 -
- m(p)lt\-l) for It} e {m(p) - 1,m(p) + 1% . Since

s m i s
gy = E0g)a - m(p)1t171) (0% @ P)(¢) it
follows by :mduct:.on that (DX qp)(t) is a polynomial of or-
der | kx| + 1 in indeterminates (DJq )(£(1 - m(p)1t1™1))
(14151 &1xD), (D'gP)(t) (061ék, i =1,2,...,n). Hence,
it is sufficient to show that the derivatives of ¢ are
bounded by constants which do not depend on p. We have
(DI g2 (t) =y, = FiampHtl™ 4 m(pltsta1tl™3 for j = o
and

. : ok
(0 @) (t) = -m(p)Leg (DI 1)() + 3 (0w Iy (1)) for | ji22.
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Aceording to (1) there exist constants e j such that,
for 1jl21, Itled{m(p) -1, m(p) + 1>,

103 gD)(t)1 4 e gmip) 4179 2 2e .

Now, sget

(¢ 9pa)* @ )(t)+(1- gap(t))a(t) for (tle<m(p)=2,m(p)+2)
b(t) ={ P=1,2,.c0

a(t) otherwise.

This function belongs to C®(R,) and satisfies 1°. Gi-
ven a |t| e { m(p)-2,m(p)+2 , t4m(p) we have, according to

(1),(2)

k
[O5) (t) [ & | (Da(x) (D) (t-x)ax| + = (%1 -
/"’Px X (Tg) (t-x)ax] Oéiék(i)

-~ ¢ N ) (D ta)(t)1 4N, sup a(x) &, ({x:
%p k|x|e<m(p) 1,m(p)+1) “n

tt-x& 13) + max(2p,3| k-1 ) 1k-il,
! 0' ()xi o&?i e

Ve P2l =Rl 3y o o (dx: 1t-x1 419) (m(p)+P)+

+ = 2p,310-11) -1 g tk=Yip(p)
oem: ( )Ki 04 jek-1 max(2p,3 k-1l ‘ (mlp)+

+ 2)P£c (m(p)+2)P,

where (Jk are suitable constants which are clearly indepen-

dent of (m(p))‘;)"=1 and @, is the n-dimensional Lebesgue¢ me-

asure in Rn' The last inequality follows from

(5) 2p£m(p)-2 p = 2;3,00.

To obtain estimate (4) demte bty M ={t; ¢(t)2 1/2}7 and

Mpt{t; qp(t)z 1/2% . Then
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b(t)z %a(t) for t4M, and so b(t)z% (m(p-2)P~1

for tefltle {m(p)-2,m(p)+2> ¢~ lp. Observe that up =

= {t; t-m(p)t/Itle M}. Take €, ¢’ positive such that
ftijltleetc Mcit;ltl&«e’? and e+€ < 1. If 1> J>e+
+¢’ then, for each tellp the set Kp ={xe¢ Mp:lx-tl< &3
eontains a ball K ={xeR: |x-m(p)tit\” P ¢ % for all

p = 1,2,... Then, for te up, we have

B(t)z[ g (xalx) g(t-x)axz2™ inf a(x). inf gls).

xeK
P
. @p(K)Z Co(m(p)-2)P

where C is a constant depending on €,d ,n,¢ only.

We have to show now that b+ e ¢ , iee.

sup max l'l;l‘j I(Dkb'l)(t) |< oo for all j,kZ0.
p itle { m(p)-2,m(p+1)-2%

1r £, £l AR ) then D¢~1 = P (f,...,D5r)/2!KI*2
where P, is a polynomial of order k! in indeterminates
Dif for O£ik and the coefficients of P depend on k only.
Pix j and k., First, let us take |t| ¢ {(m(p)+2,m(p+1)-2)
for 2p23ik|. Then b(t) = wP(t) = [t|P. According to (1),
(2), and (5) we have, for arbitrary nonnegative multiindex
m£k
1 (DPWP) (1)) & ayp'™ je1P=Imlgq j4)P
It follows that

113 1% (1= 11T 1P (1)1 = 1t 191R_(wP(2) , o o, (DKWP),
@1 P ) ¢ 119 ( mex (03P (e ! ey POl D

04j4k
PARIE X o2z, T L Y b L L
where I.k,uk are auitgble constants.,
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Now assume [t| e { m(p)-2,m(p)+2 ) . We have, aceording
to 2°, the following estimate
C];(m(p)-i-Z)p'k‘
CUEI*L (1(0yop)(P=1) (1 KI+1)

DL e PRI

£0l7(1+ PIEIRS | (m(p)-2) PHIFIKIFL

m(p)-2
g’ (e HPIEIMI (n(p)-p) PrI+IKIL,

The last expression is bounded and so the proof is complete.

2.1. Theorem. Let K be a bounded subset of ¢ . Given
€> 0, s, natural and Jo2 0, Kk, = (kol,...,kon)z(?, there
exists an a in & and a sequence (Kq )‘::1 of bounded subsets
of ¥ with the following property: for x € K there exists an
Yg€ K (£x)7 with
1° x =a%, for s = 1,2,...

2° \x—ye\jok ée for s =1,2,...,8..
()

Moreover, if x,—* 0 in ¢ then the corresponding y mo
for each s.

Proof. The subset K is bounded, so there are a positi-
ve function h and nonnegative constants (qk)kr.o such that

sup 1t19 n(t)< Mj<ao for all jz O and \(Dkx)(t)\éqkh(t)
te .

for all te R, k20, x€K (see L10], p. 235), Denote by

= © - _
Qp -lk?éa: Qe and take a sequence (ep)p=1 of positive num
bers, Since D5 is a polynomial in indeterminates |tl,

\t\'l, tyseeesty, (t#$0) it follows from (2) that we can find

a sequence (m(p));a=1 such that
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(1) 119105 ) (1)) B(e) £ €, for It]2 m(p)-2 and all
Ikl4p, 04r4p%, j&p(p+l)

.i°+8°p k_r
(ii) 1tl 1(D"w )(t) h(t) £ e, for all p = 1,2,...,
O<r£s,p, Okkky, |tz m(p)=-2

(iii) m(p+l)-m(p)Z 5, m(1)=3

It foillows that
(6) 1191 (05" (t)) t(pix)<t>t4=qpe
P
for It1zm(p)-2, |il,lk|4p, O4r &p2, j4p(p+l), x€K and
Jte
(M 1170 P I (0 1ot () £ ay Ep
(+]

for |tiZzm(p)-2, O£ i,k4k,, O4rés p, xeK and p = 1,2,...

Let us take an x¢K and consider the factorization of
x in the form x = b~®(b%x) where be is the function eorres-
ponding to (n(p)):,l aceording to Lemma 1.1, The functiom
bt belongs to & so that b ™" be'longs to & as well. We ha-

ve to show that b°x is in & (s = 1,2,...), i.e.

sup max lt\jI(Dkb’x)(t)l <o for all j=O0,
p m(p)-2£Itiém(p+l)-2
sZ1, k20, Having known that b°x e ¥ it follows that
°x 6 (¥ x)”. Indeed, there exists an approximate unit
“n’:*l in & consisting of functioms with compact supports,
so that b®x = lin enb’x forxe¥ ,s=1,2,..., . Since
onb' are in ¥ as functioms with compact supports, we ob-
tein v°x € (¥x)".

Fix j,k and s, If p> max(lkxl,j,s) we obtain according

to (6), for (t| e {m(p)+2,m(p+1)=2> , the estimate

11 R %x)) ()| = 1t X105 (w®Px)) (£) ] =
- 496 -



k
=1t19 = 1) 10wy ()1 105 o ey 1 ¢ 2 g e .
Oéiék( )it (0™ =) )~l S
Now, assume |t|e{m(p)-2,m(p)+2> . It is easy to see that,
for £eC¥(R)), D*2° is a polynomial P . of order s in in-

determinates f,...,D°f, Again, accordmg to (6), |tIP +p
1(0¥1x) ()1 £Q g This, together with 2° of 1.1 yields

. k . .
1419 1050 (4] £ 1119 o‘zjzk(i)l(les)(t)l Io5in) (0] =
pt
- 2 (s )lp. S(B(t), ene, (01D ()] 1619 1D x) (1)1 &
£isk
: 2 2 "
o (m(p)+2)°P [ ¢[I7P7=P |4 |PT4P | (pFix) (1)1 4

X
oFucli) 5

2 k
2)°P e D .
4(m(p)+2)°P (n(p)-2) % I (1)& 6 «

X .

K, . -

0F ek ( i) s Qpcp, where Kl,s are suitab
From the last two estimates we obtain

)SP

& (1+
m(p)-2

le constants,
s

119 1(D¥b x)() &M o . Qe, for Itle<n(p)-2,m(ps1)-2 ),

p large enough. According to (7) we obtain, for s=l,2,...,s°,

p=1,2,..., 8imilar estimates

J X
1t1°°1(D %b®x) (L) & Hep, where M, M4  are suitable constants.
?

. co
Given an ¢ > 0, let us choose now (e ) p=1 ©° that

Q e — 0 and max Mep£ €/2. Using these estlmates we can de=-
peN
duce the following facts. First, b°x e for xeK,8=1,2,...,
alle'-K are bounded in ¥ and |x-b°x| max |t} °
oko tt.Rn

X
(D 0%) (8)=(D" °5%x)(t)| = max It °I(D x)(t)=(D °b°x) (1)
Itizm(1)-2
£ ¢ for 8=1,2,...,8,. Finally, if x,—» 0 in & then,
for K = (:51)::1, we obtain y = bsxn tends to zero as well.

Indeed, let us fix j, k and s. Given an € > O, let us find
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P, 80 that "k,aqp Gp &£€¢e forp2 Po* There exists n, sueh

that, for nzn,, Ixl 16 ( = (1) su [(otp®) 2yt
’ o’ 1% %5 Vi weac)
]

for 1& k. It follows that, for nZn_, we have

(]
17p) g = mex (lx1|:|azm(p°)ltlj\(Dkbsx“l)(t.)\+

mex It 0Px ) WD 6 e

itizm(p,)

The proof is complete.

Remark. Since the Fourier tramformation is a conti-
nuous linear mapping of ¥ onto itself and takes the point-
wise multiplication to the convolution, Theorem 2.1 holds
also if we replace the multiplication by the convolution.
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help during the final preparation of the paper.
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