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19,3 (1978)

IDEALS IN TRANSFORMATION SEMIGROUPS

R.,P. SULLIVAN, Nedlands

To SANDRA PEARCE with ever-lasting affection

Abstract: We first survey the work done on determi-
ning the one and two-sided ideals of various transforma-
tion semigroups, and then generalize this to cotransiti-
ve semigroups and the semigroup of transformations which
shift less than § elements. In both cases, the complete-
ly semiprime ideals are characterized.
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l. Introduction. A number of authors have determin-
ed the ideals of certain transformation semigroups. For
example, in [ 6] Malcev shows that every ideal of Ty has
the form T¢ ={ e '5x: rank o« < § 3 where 1< § < (D4l
and in [16] Vorobev finds all ideals of H(X, % ) (the
subsemigroup of ".SX shifting at most a finite number of
elements in X) to be of the form H ={fx e ﬁx:defeo zn }
where 04 n < s . Next Liber [3] obtained a result for S'X,
and Sutov [12] one for Py, that is analogous to that of
Malcev. Subsequently Sutov {111 also described the ideals

of W(X, %) (see [10] for notation) in the following terms.
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We say that o € Py strictly fixes x€ X if xedom oo, XX =
= x and if yx = x then y = x. Let Yc X and for < € Py,
let Y(e) denote the elements of Y strictly fixed by o« .
Put T(Y,x) = Y\ ¥(x) and T (e,Y) = ranc\Y( o) and
for eaeh finite n satisfying O4n £ |X\Y| , let W(y,n) de-
note the set of all « & W¥W(X, xo) such that (i) all elements
of dom ¢ , except for at most a finite number of them, are
contained in Y, and (ii) if T (Y¥,«) and T (ec,Y) have car-
dinal p, q respectively, then q£p + n. Then every ideal
of W(X, %)) is a union of a family of sets of the form
W(Y,n). Finally in [13, 14) Sutov shows that the ideals of
R_ (the A-class of ':1x containing Lx: that is, the semi~-
group of all one-to-one mappings from X to itself) can be
identified with the sets R(§) = {« e R :defoc 2 §§ for
some § £ [ XI|.

In § 2 of this paper we shall present a unification of
some of the preceding work and in § 3 we shall generalize
and simplify Sutov’s results on W(X, ). In § 4 we itemi-
ze various types of ideals that have been used in the (ab-
stract) theory of semigroups and interpret such concepts
in the theory of transformation semigroups. Whenever pos-
sible we shall make special mention of one-sided ideals in
transformation semigroups.

We are indebted to Professor G.B. Preston for stimula-
ting the idea of this paper via a course of lectures in
1965 at Monash University: these were in turn founded on

the seminar material summarized in [ 8],
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2. Ideals determined by cardinals alone. We shall

use the notation of [1] and [10]. In particular we reeall
that "transformation semigroup" connotes any subsemigroup
of (PX where X is an arbitrary non-empty set; that g’ de-
notes the successor of the cardinal g ; and that § xi}

will, within context, signify a set of elements Xy index-
ed by some (unspecified) set I (see [1], Vol. 2, p. 241).
We shall also adopt the standard convention of writing

< ()

x4

e ?xas

.lo NO"

where Xe¢ = {xil , X/ec ool ={Ai§ and A; = x'ieo
te that this also means dom & = U A;. Finally if S is any

transformation semigroup, we write
Sg ={e e Sirank « < §}

which,in the notation of [10], equals Sn 1’g .
To unify some of the work summarized in § 1, we now
define a transformation semigroup S to be cotransitive if

whenever oc € S and
A
« - (
Xy

then (i) for each §y;} S X, there exists A ¢ S such that
yie xil'l, and (ii) for each 4b;1 € X, there exists w ¢

€ S such that
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".l'heorem l. If S is any cotransitive subsemigroup of

Tx, then the non-zero ideals of S are precisely the
sets S§ where 1< € £ |X|’ . In particular, the principal
ideals of S are of the form Sf’ where g z 1.

Proof. Since rank (e[} )£ min (rank «,rank (3), each

S§ is an ideal. Conversely suppose I is an ideal of S
and let E equal the least cardinal greater than rank 3
(B e I). Then IESE . let x € Sf . If rank 8 < rank oc
for all (3 € I, we have a contradiction. Hence there ex-

ists (3 € I with rank 32 rank ¢ . Let
Ai Bj
& = b ﬁ = ’
xi yj

and choose a partial cross-section {bi} of {Bj} . Then

since S is cotransitive, there exist A, € S such that
i
as(
. b

and b;B € xi‘w'l, 8o that ec= A3« € I and we have I =
= SE as required.

Remark 1. It is easy to see that each of gX’ 'Jx
and @x are cotransitive and so the results of Malcev
[6], Liber [ 3] and Sutov [12] are immediate consequences

of Theorem 1. The reference to principal ideals generali-
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zes an observatiom in [8].

A description of the principal one-sided ideals of
any cotransitive semigroup is contained in the following
result: it unifies the characterizations of Green’s &£
ard & relations on Jy [1, Vol. 1], Iy [9] amd .’?x
[2); we omit the (easy) proof.

Theorem 2. If S is a cotransitive semigroup amd o« ,

{5 € S, then

(i) e« e sl.3 if and only if X« X , and

(ii) e .s! if and only if Be [3'1 € waoocl,

Since any left ideal of a semigroup is a union of
principal left ideals, we have in fact described all left
ideals of any cotransitive semigroup. In [13, 141 Sutov
showed that the Baer-lLevi semigroup Mlxl (see [11, Vol.
2) has for its left ideals the subsets N of M|y  With the
property: if 3 € N and Xe € X(3 for some « € M;y| where
I XA\ X«| = |X|, then « & N. We generalize this to any
Baer-Levi semigroup Mq by showing:

Theorem 3. If «, ﬁcuq, K, &q &£|X|, then « =
=AM for some A € M, if and only if X« € X3 and
| XA\ X | = q.

Proof. If X« & X3 then « = A3 for some A such
that A e A~1 = o 6 ™!, Hence A is one-to-one and we

have

IX\XAL = [(X\NXA)B) = 1XB\ Xap) =q,
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as required for A ¢ lq. The converse is equally clear.,

It is well known that the Baer-Levi semigroups are
right simple (see (1], Vol. 2, Theorem 8.2). This is not
true of the partial Baer-Levi semigroups Nq ={cc € gx:

:defoc = q t.

Theorem 4. If e, ﬁth, #,4q £ X}, then < =
= (A for some A€ Nq if and only if dom B<cdom .

Proof. If e =(A then e B 1€ oot which
in turn is true if and only if dom 3 E€domoc . Hence if
dom 3&dom e , then there exists A ¢ Py such that o« =
= (32 where in fact A can be chosen so that A e § x and
XA = Xeo o

To close this sectiom we note that Sutov [13, 14] has
also shown that every left ideal of R is of the form
{0 € R X €Y} for some fixed Y& X; that R is right

simple is clear from its definition.

3. One and two sided ideals of W(X, § ). Throughout
this section X will be an infinite set and § an infinite
cardinal. As in [10] we let W(X, g) (or W for short) deno-
te the semigroup -{w 6 ?x: | s(ee) | < 3 where S(x) =
=fxedome :xec % x3}. Clearly, W(X,§) = Py when § =
= |X|’ . Sutov [11) has observed that each W(Y,n) is an

ideal of W(X, #,) and that in particular when |Y| =mn <
< %4, then W(Y¥,n) ={« € W(X, 8 )irankkém + n}.
In this section we intend to characterize all the one

and two sided ideals of W(x,g ). For this purpose we begin
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with

lepma 1. If L, R are respectively left, right ide-
als of W then

(i) if e L, then Lxy €Ly and

(ii) if e« ¢ R, then J'«¢ = & for some idempotent

d"cRnUdom“-

Proof. We start by writing o ¢ W as

“i “j Yy
ol )
x; v; Y
where | A;|> 1 for each i (such o o o™l - classes may
not exist, in which case the following argument still holds
with suitable re-interpretation), uj#vj for each j, and

|l Tvd = § . For each i, choose a & A;\ x; and define

a mapping 7 by

xi vj yk
fx‘:( )o

ay uj Yy

Then 7 is well defined since {x;}, {vji y 1y, 3 are
pairwise disjoint, as are -iai} ’ {ujl_ and{yk} . More-
over |S(y)l< § , < =Ly ,and «y= d" sgy, is
an idempotent such that de¢ = « , and the result follows,

The next result now follows as an easy consequence,

Theorem 5. Let = be a family of subsets of X and
put

Ly =ufWe, A e=3, I, =uiWeL, - WiheXy.

- 437 -



For each A ¢ 2 , choose an idempotent 61 € ‘JAnI and

put
Rg =ui{d,-Wihe =} .

Then Ls , Rz ’ Iz are left, right, two-sided ideals of W
and all ideals of each kind are obtained in this way.

Now let s‘.§=usx:u\¢§} and put P = Py. Note
that I-‘g =ug PeL,*P:h ¢ Si} . For, if e Pg , then
= eely Ly, ond X< € Sg , and conversely if « €
eP- LA'P for some A ¢ 2.; , then rank &« < g (since

rank (e f3)&ranke , rank B ). We also have

Corollary 1, Let =, be a family of subsets of X and
for each A€ = , choose an idempotent d'Ae J,. Then

Lg =UiPo(,:A ¢ =3, By = vid,-P:h e 3}

are respectively left, right ideals of ?x and every left,
right ideal of (Fx can be obtained in this way.

4. Completely semiprime ideals. We follow the termi-
nology of {7] rather than [4]) and eall an ideal I of a se-

migroup S completely prime [ completely semiprime ] if abe X
implies a¢I or bel [ac I implies a€I] . In this section
we shall show that for Uy, Py and Iy, completely semipri-
me ideals (and so also completely prime ideals) are 'virtu-
ally non-existent, whereas W(X, § ), E£1X | , contains an
infinite number.

Theorem 6, If {X|=n <, and S denotes any one of
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Iy §x or .’Px, then S/ is the only proper completely se-
miprime ideal of S.
Proof. We know that S,, 1< rén, are the proper non-

zero ideals of S- Suppose l=<r<mn and choose Yyseeos¥po]

in X, ue ¥ \4{ yl,...,yr_l'f {denoted by Y say), and ve Y\u

(non-empty since r<n). Now if S equals 'Jx or 3’!, define

A e Jyby
Y1 Yz e Vpay X
2 ( )

v yz soe yr_l u

end if S equals Jy, define A e gx by

yl LN ] yr-l u

yl vee yr"l v

Then in all three cases, 2%e S., but A ¢ S.. Finally if
‘12: Sps but A & S, then Qe Gy and so Ale G e

contradiction.

Theorem 7. If X is infinite, then none of Uy, gx,

{Px contains a proper completely semiprime ideal.

Proof. We know that if S denotes any one of Uy, 34
or .’Px, then Sg (1< § £ 1X|) are the proper ron-zero i-
deals of S. The following argument implies whether f is fi-
nite or not. Choose ae X and select a partition {4 xii ,

4y43% of X\a inwhich |Il2 § . Now define A, by

Yi X\{yi}
e (2
X a

1
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and put A, = 41| { y;% - Then in the appropriate cases
we have Ai; S§ but Ai* SE , and thus no SE is comp-
letely semiprime. .

To determine the proper completely semiprime one-si-
ded ideals of W(X,§ ), we first recall that if = e P,
then A € = is maximal in = if ASB and B € = implies
A = B,

Theorem 8., Let X be an arbitrary set and for each
a€X, let A= X\aand A=fAraeX}. If & € P(X) and
contains a maximal element, then Lz is a proper complete-
ly semiprime left ideal of 'E (f =z $°) if and only if
X¢= and A€ E for each A € A (in which case Ly =
=ULW.L, A e A3,

Proof. If Ly =W, then Ly = &« Ly for some B ¢ =
and « € W so that B = X. If X ¢ = , then for all < € W,
& = cc't-xs Li . This establishes that LS is proper if
and only if X & = .

Now suppose I..z is proper and completely semiprime
and let B be maximal in = ., If | X\BlZ 2, we can choose
s, te X\B and put

‘ s b
()
t bi
where B =4b;} . Ten A% = L €Ly implies Ae Lg ,
8o that A =e- L for some e € Wand C ¢ = . NowB g
€ BUutEC implies (by maximality of B) that t € B, a con-

tradiction. Moreover | X\Bls O by our initial remark.
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Hence | X\B| =1 and B = X\ a for some aé€X,

Now choose béB and put ¥ = B\ b =&ya-§ say. If we
b yJ-
c,l, =
a ¥;

then @.2 = Ly = Lyclpely implies we Ly , and 8o

write

@w= @ Ly for some De= and @ € W. Then X\'b = Yvas
€ D, Since D#X, we obtain D = X\ b; that is, A € = as
asserted.

For the converse suppose = does not contain X but
does contain every A € A and ket «? = w. Lg for some
we Wand B e = , Then @« is not onto X and so there ex-
ists a€& X such that Xexc £X\a = A, Hence o« = « » t.‘el’..s

and thus Lz is completely semiprime.

Theorem 9. With the same notation as in Theorem B ,
we have: Ry is a proper completely semiprime right ideal
ofVg ifeand only if X ¢ =, AS = and for each A 6
e A , the idempotents d"A e 9‘ equal ¢, (in which case
Rg = v{ Ly* WA e AY). .

Proof. Suppose Rz is proper and‘completely semipri-
me and that also X € & . As an abbreviation, let o = Iy
and assume Xd" =4{a} . Then we must have § = 1X{/ and for
be X\ a, the mapping

‘X\{a,b} 4{a,b}
+ )
a b
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belongs to W. However x? = aye RS , whereas ov ¢ Rg
(since dom ¢ = X and rank o« = 2). Hence rank d = 2, Now

since d"s4 Ly, we can choose &€ Xd” such that tad™t1 2 2.
Put B = ad "1 and write

B Bl Bk B\ a Blu a Bk
= ’

a bl bk a b 1 bk

where the index set K is possibly empty. Then

BuB, B, {ia,by} b,
a'a = ( = d. € Rz
b bk b bk

1 1

and so A e Rg © Since dom A = X, we must therefore have
A =dp for some [3 e W. However if b& B\ a, then a3 =
= bdB =DbA = a, whereas ad = b4 ad3 . Hence if Ry
is proper and comple tely semiprime then X & = .

We now proceed as in the proof of Theorem 8 by also
letting B be a maximal element of B : if |X\B|22, we
choose s8,t € X\ B and let A be the mapping with domain Bus
such that eA =t and A|B = o’p. Then A e Ry and 8o
A= dyew forsome CeE and w & W; this implies

dp+A = A , so that B domA £ C and we find that B =

= X\ a for some a6 X. To show A & £ , choose b+ a and

write
1)i \ (D\blu a Di D;
) ’ w= y T =
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where b e D. Then ‘«.z =y = dgreRy , and 80 @=
= dp+ (3 for some® e= and (3 & ¥W. It now follows that

X\b = (BAD)uU(D\b)ua =dom v £

and thus E = X\ b, Moreover if A ¢ A& and dy# t,, we ha-

ve a econtradiction similar to that indicated in the preced-

ing paragraph.

For the converse we simply note that if Ry = W then
Ly = Lg* < for some C € £ and we obtain C = X; furt-
hermore if .?oz = JB' @ for some Be= and if X ¢ = ,
then dom A # X and so domA € A for some A € A . Henece if
A e 2 and each 0 equals L, (A e A), we have o =

= L‘- o« € Rz and the result follows.

Corollary. With the notation of Theorem 8 and if I de-
notes v4{ W- L Vihe A 3 , then I is the only proper comp-
letely semiprime ideal of W. Moreover, if L_ denotes the

& -class of Uy containing Ly (that is, the set of all

mappings from X onto itself) then I = ¥\L .

To complete this section we briefly consider the exis-

tence of reflective ideals in transformation semigroups:

that is, an ideal I such that abg& I implies bae I [5, 15].

Theorem10., If X is infinite, then none of Ty, 9y

or Py contains a proper reflective ideal.

Proof. If TE (§£|X|) is proper and reflective, par-
tition X into AuB where |Al =§¢ and |IB)Z § , and fix

some b€ B, Now let C = «teil be any subset of B\ b with
cardinal g and put A ={ai‘§ . Finally write
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X\A ay X\C ¢y
< = and (3=
b a; b

a4

Then rank (sc3) = 1 but rank (Bec) = § + 1. This proves
the result for ‘Jx and fo; the modification required for

gx is obvious.

Theorem 1l ., If|X|=n<x and S denotes any one of
'Jx, sx or C(’x, then S, is the only proper reflective ide-
al in S,
Proof, If «, 3€ S and rank (e f3 )< n when rank ((ec)=
=n, then bothet, 3 € C}x and we have a contradiction. Hence

Sn is reflective in each case,

To conclude the proof for Jy and '3"’1, let r<n - 1 and

note that if we write

1 2 teer =1 r Y
m( ,

2 3... »r r+ 1 r+2

(2 3 .. r 1 Y )
{3 =
1 2 .i0r =1 r r+1

where Y = X\ {1,...,r}, then rank (< 3) =r whereas

rank ((Lac) = r + 1; obvious modifications to « and (3 al-

80 establish the result for Sx.
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