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C0MMENTATI0N1S MATSBMATICAE UN1VI1S1TATIS CAROI1NA1 

19 ,3 (1978) 

IDEALS IN TRANSFORMATION SEMGBOUPS 

R.P. SULLI¥AN, Nedlandft 

To SANDBA PEA1CE with ever-lasting affection 

Abstract: We first survey the work done on determi­
ning the one and two-sided ideals of various transforma­
tion semigroups, and then generalize this to cotranaiti-
ve semigroups and the semigroup of transformations which 
shift less than f elements. In both cases, the complete­
ly semiprime ideals are characterized. 

Key words: Ideal, transformation semigroup, shift, 
completely semiprime, reflective. 

AMS: Primary 20M20 

Secondary 20M10 

1. Introduction. A number of authors have determin­

ed the ideals of certain transformation semigroups. For 

example, in 16] Malcev shows that every ideal of 7^ has 

the form T| s-fcfre <$xi rank «, < § % where 1< f * lX|' 

and in [16] forobev finds all ideals of H(Xf mQ) (the 

subsemigroup of 9v shifting at most a finite number of 

elements in X) to be of the form H n =4ec e Cfx:def oo Zn 1 

where 0.in < j* . Next liber [33 obtained a result for &%f 

and Sutov [12] one for iPx, that is analogous to that of 

Malcev. Subsequently Sutov till also described the ideals 

of W(Xf ^ Q) (see [10] for notation) in the following terms. 
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We say that «o € $*x strictly fixes x€ X if x € dom oo f xoc » 

* x and if foe « x then y s x. Let Xfi X and for cc € &%9 

let X(«C/) denote the elements of X strictly fixed by oc # 

Put HX,**,) « X\X(oc) and F(ocfX) » ranocAXCoo) and 

for eaeh finite n satisfying 04rnS IX\X| f let W(yfn) de­

note the set of all oo e W(Xf K ) such that (i) all elements 

of dom ac f except for at most a finite number of them, are 

contained in Xf and (ii) if r(X,©6) and F(©6fX) have car­

dinal pf q respectively, then q-^p + n. Then every ideal 

of W(Xf .*% ) is a union of a family of sets of the form 

W(Xfn). Finally in Il3f 143 Sutov shows that the ideals of 

B^ (the ̂ rclass of $ x containing 1.3*4 that is, the semi­

group of all one-to-one mappings from X to itself) can be 

identified with the sets R( | ) * 4 co e M^idefoo -* f 5 foy 

some | £ 1 X|. 

In § 2 of this paper we shall present a unification of 

some of the preceding work and in § 3 we shall generalize 

and simplify Sutov's results on W(Xf ^ ) . In § 4 we itemi­

ze various types of ideals that have been used in the (ab­

stract) theory of semigroups and interpret such concepts 

in the theory of transformation semigroups. Whenever pos­

sible we shall mike special mention of one-sided ideals in 

transformati on s emigroups• 

We are indebted to Professor G.B. Preston for stimula­

ting the idea of this paper via a course of lectures in 

1965 at lonash University; these were in turn founded on 

the seminar material summarized in i 8l. 
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2. Ideals determined by cardinals alone. We shall 

use the notation of El] and [10]« In particular we retail 

that "transformation semigroup* connotes any subsemigroup 

of # x where X is an arbitrary non-empty setj that |' de­

notes the successor of the cardinal | | and that 4 x . i l 

will, within context, signify a set of elements x* index­

ed by some (unspecified) set I (see [1], Vol. 2, p« 241) • 

We shall also adopt the standard convention of writing 

tc € f% as 

-r 
where Xoo = ^ x i i t x / ° ^ # *> s i^\ a n d * i * ^i00 • No"" 

t e tha t t h i s also means dom oc = u 4 . • Finally i f S i s any 

transformation semigroup, we wri te 

S | »4oo e S:rank e& < | $ 

which,in the notation of 110], equals SnP- • 

fo unify some of the work summarized in § lf we now 

define a transformation semigroup S to be eotransitive if 

whenever oc c S and 

вt, s 

4 

ч 
then (i) for each ly.^} £ X, there exists X « S such that 
y i l x i ^ » and ^ ^ *ov ®ael1 ^\^ £ X* there exists fu i 
€ S such that 
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* i 

1 

Theorem 1. If S i s any cot rans i t ive subsemigroup of 

£P-£f then the non-zero ideals of S are precisely the 

se t s Sp where 1< € .ft |X|* • In pa r t i cu l a r , the pr incipal 

ideals of S are of the form Sg# where f 2 1. 

Proof. Since rank (ek|l )£m±n (ranked, rank/$ ) , each 

S | i s an i dea l . Conversely suppose I i s an idea l of S 

and l e t | equal the leas t cardinal greater than rank ft 

((3 ft I ) . Then X£ Sg . Let ®e ft S* . I f rank ^ -c rank oo 

for a l l J| € 1, we have a contradict ion. Hence there ex­

i s t s (J c I with rank (i > rank oo . Let 

Ы0 « 

AŁ v , B. 

/S -
Уò 

and choose a partial cross-section 4 ^ 1 of 4Bjl • Then 

since S is cotransitive, there exist A , f^c S such that 

*-o 
. - 1 and b ^ p 6 x^^cc, , so t h a t ©C = tK^^ ft 1 and we have I * 

* S| as required. 

Hemark 1. It is easy to see that each of ?-«., tfx 

and ^ x are cotransitive and so the results of Maleev 

t63, Liber t 33 and Sutov t!2 3 are immediate consequences 

of Theorem 1. The reference to principal ideals generali-

- 434 -



zes an observation in [ 8 ] . 

A descript ion of the principal one-sided ideals of 

any eo t rans i t ive semigroup is contained in the following 

r e s u l t : i t unif ies the character izat ions of Green's £d 

and SI r e l a t i ons on $% £ l , Vol. U , $x C 93 ana f% 

[2] | we omit the (easy) proof. 

Theorem 2. If S i s a co t rans i t ive semigroup and cc » 

ft e S, then 

( i ) ©6 € S 1 . (h i f and only i f X« & X/J f and 

( i i ) ©6 € ft . S 1 i f and only i f ft » /I " 1 £ «, « eT 1 . 

Since any l e f t ideal of a semigroup i s a union of 

pr inc ipa l l e f t i dea l s , we have in fact described a l l l e f t 

ideals of any cot rans i t ive semigroup* In Cl3 f 143 Sutov 

showed tha t the Baer-Levi semigroup MI^I (see CU f Vol. 

2) has for i t s l e f t ideals the subsets N of M|Xj with the 

property: i f ft € N and Xec S Xfi for some oc € ^\x\ 1 * i e r e 

I Xft\ X«6| « 1X| , then oc £ N. We generalize t h i s to any 

Baer-Levi semigroup M by showings 

Theorem 3 . If ©6 , $ € M , 4* Q * q -<M X I , then «o = 
s Xft for some 4 € M i f and only i f XocfiX/J and 

I Xft\ Xeol » q. 

Proof. I f Xec-S X|I then ©c a •%/! for some X such 

tha t 4 « X" = 06 * 06 . Hence X i s one-to-one and we 

have 

l x \ x a i « l ( x \ x a ) / l l « l X p \ X ^ / | | • q, 
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as required for & f M . the converse is equally clear. 

It is well known that the Baer~I*evi semigroups are 

right simple (see £13, Vol. 2f !Cheorem 8.2). Biis is not 

true of the partial User-Levi semigroups N «<ooc $ • 

:def oc « q I • 

Theorem 4. It oc% (i c N , -ft0-tQ £ IXl f then *c « 

« $X for some % c N if and only if dom t3sdom «o . 

Iroof. If oc m $X then ft « rl"1 £ ec* oC1 which' 

in turn is true if and only if dom (i £ dom ©c . Hence if 

dom|3fidomec , then there exists X c ^^ such that oc « 
s /3<% where in fact & can be chosen so that X £ S ^ and 

XX « Xoo • 

To close this section we note that Sutov [13, 143 has 

also shown that every left ideal of 1^ is of the form 

it&i R ^ X * CI} for some fixed ICXj that l^is right 

simple is clear from its definition. 

3. One and two sided ideals of W(X. ̂  )* Throughout 

this section X will be an infinite set and | an infinite 

cardinal. As in tl0 3we let f (X, | ) (or W for short) deno­

te the semigroup 4,«c» C f % i \ S(«fr) | * | f where S(*o) » 

* 4 x c dom «c IXGC, + x | . Clearly, W(Xf f ) « &% when | « 

= |X|# . Sutov C113 has observed that each W(Ifn) is an 

ideal of W(Xf &Q) and that in particular when III « m *-* 

< m0$ then W(f,n) *|«c c W(Xf >*0) srankot * m • n } . 

In this section we intend to characterize all the one 

and two sided ideals of W(Xf | ). For this purpose we begin 
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with 

Lemma 1. I f Lf 1 are respect ively l e f t , r i ^ h t i d e ­

a ls of ¥ then 

( i ) i f cc e Lf then ^j^^^t a»d 

( i i ) i f «c e Hf then cfcc = oo for some idempotent 

*•• R n ^domoc * 

Proof. We s t a r t by writ ing o&€ f as 

A4 u 4 y^ / *i uj yk \ 

^ XJ v- y,, ' 

where ( A. | »• 1 for each i (such ©o • ocT - classes may 

not exist, in which case the following argument still holds 

with suitable re-interpretation), U 4 + T 4 for each j f and 

I IuJ l*< ̂  • For each i, choose a^c k£\ x^ and define 

a mapping <tf by 

xi v j yk \ 

a. U j yk ' 

Then 3* is well defined since 4 x^f f i*vA , 4y^} are 

pairwise disjoint, as are -ia-l § 4u4$ and 4ytr? • More-

over | SC^f) 1 -s | f f̂
 s ^ Xeo * and ^ ^ * ̂  Sayi is 

an idempotent such that cfik » oo f and the result follows. 

Hie next result now follows as an easy consequence. 

Theorem 5» Let 2 be a family of subsets of X and 

put 
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For each A • 2& f choose an idempotent cfc € 9^ n V and 

put 

1 ^ » u i c f 4 . WsAa 2g$ » 

Then L^ t R<g f 1^ are l e f t , r i g h t , two-sided idea ls of 1 

and a l l ideals of each kind are obtained in th i s way* 

Now l e t 5 i | « 4 AS Xs I A I -= | 1 and put P » tP%. Note 

tha t Pg « u*t P* c4«Ps4 c S A , For, i f «& e P~ t then 

eo = e c ^ c ^ ^ c^ and Joe € 2Sg f and conversely i f ©c € 

€ P* c^ • P for some A 6 2 L , then rank ec> «*s f (since 

rank («o Ŝ ) 6 rank «c f rank ^ )• We also have 

Corollary 1« Let £ be a family of subsets of X and 

for each A c SEt , choose an idempotent cf* € 3L • !Ehen 

L ^ » u i P * t 4 :A a * } t 1 ^ « u4 £k* PsA « £ I 

are respective3y left, right ideals of £PX and every 3eftt 

right ideal of ̂ Px
 c a n ^e obtained in this way. 

4. 0pmplete3y semiprime ideals. We follow the termi­

nology of t?3 rather than £43 and call an ideal I of a se­

migroup S completely prime [ completely semiprime J if ab e I 
2. implies acX or b c l [a * I implies a e l ] . In this section 

we shall show that for Qf^, P% and S^f completely semipri­

me ideals (and so also completely prime ideals) are virtu­

ally non-existent, whereas W(Xf | ) t | 4 I X | , contains an 

infinite number. 

Bteorem €» If t X 1 « n -* JrV and S denotes any one of 
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0X > ^ | or {P-j-., then S^ i s the only proper completely s e -

miprime ideal of S. 

Proof. We know tha t S p i 1< r ^ n , are the proper non­

zero Meals of S- Suppose l - * r ^ n and choose y-̂ * • • • t^ r -1 

in X, ucX \ 4 y^,«.«.,yp_^$ (denoted by X say) , and v # X \ u 

(non-empty since r - c n ) . Now i f S equals tL. or JP—f define 

a e tfx by 

/ ^ i y 2 ••• yVmml 

• y 2 . . . y p - 1 

and i f S equals $ x , define A € $ x by 

/ 1̂ ••• r̂-1 n \ 

% y x . . . y r . ! v ' 

1!hen in a l l three cases, X 6 S , but A. + s
r * -finally i f 

^ c S n , but X # S , then Xe %>% and so X & %*x, a 

contradic t ion. 

Theorem 7 m If X i s i n f i n i t e , then none of 3 j f S^ f 

iPw contains a proper completely semiprime idea l . 

I¥oof. We know tha t i f S denotes any one of 0^ , 5 « 

or (P*£9 then S« (1-c | .4 | Xl ) are the proper non-zero i -

deals of S. The following argument implies whether | i s f i ­

n i te or not . Qioose a c X and se lec t a pa r t i t i on Aix*i , 

i Villi of X \ a in which I I I 2 | . Now define X-^ by 

X S i y ^ , 
/ J i ~ n n ' \ li= l / 
N X i a ' 
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and put A 2
 s A- I 1 J* 1 • !Ehen in the appropriate cases 

we have X7 «Sg &ut A. ̂  % § an^ thus no Se is comp­

letely semiprime, 

fo determine the proper completely semiprime one-si­

ded ideals of W(Xf f ), we first recall that if S £ J?(X), 

then A « S is maximal in 5l if A s B and B « -Si implies 

A * B. 

Theorem S» Let X be an arbitrary set and for each 

a«X, let A « X\a and A * * A:a eX ? • If ̂  £ JP(X) and 

contains a maximal element, then L , is a proper complete­

ly semiprime left ideal of Wg (£ > #>Q) if and. on̂ y if 

X if S and A * £ for each A « Jl (in which case L ^ * 

* U4f# 4,AsA c Jt 1 ) . 

Proof. If L— * W> then i*x * «o tfi for some B « S 

and «o « W so that B » X. If X « ̂  , then for all cc « W, 

oc * ecHj.il,. . This establishes that L— is proper if 

and only if X «fc 2EJ # 

Now suppose L ^ is proper and completely semiprime 

and let B be maximal in 23 . If I XNBl IS 2f we can choose 

s, t e X\ B and put 

b4 

л - ( *) 

where B « 4 to.il • Bien X B
 ^ Q ^ ^ J I implies X € L ^ f 

so that A " ct« ig for some •& c V and C € Si • Now B £ 

c B u t S C implies (by maximality of B) that t« B9 a con­

tradiction* Moreover tX\Bl + 0 by our initial remark* 
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Hence I XXBl » 1 and B * X \ a for some a € X. 

Now choose b € l and put 1 » B \ b » 4 y . f say. I f we 

write 

<a -

yó 

y І 

2 then M, - t « s t y ' t g f i L , implies ^ t € L ^ , and so 

p 8 6 > H D for some D € £ and &> % ¥ . Then X\ b * I u a £ 

£ D. Since D+X, we obtain D » X\ b | tha t i s , Jt S £ as 

asser ted . 

For the converse suppose £ does not contain X but 

does contain every A m A and 3e t eo = co • i,« for some 

co c W and B ft £ . Then oo is not onto X and so there ex­

ists a&X such that Xe&!£X\a = A. Hence oc » ©c • t.. #L--: 

and thus L ^ is completely semiprime. 

Theorem 9. With the same notation as in Theorem 8 t 

we have: 1 ^ is a proper completely semiprime right ideal 

of W| if and only if X f £ , A fi £ and for each A « 

C A t the idempotents G ^ e 0. equal L,* (in which case 

Ijg • wi t 4• WsA m AD» 

Proof. Suppose R^ is proper and completely semipri­

me and that also X « £ . As an abbreviation, let «T» cfx 

and assume Xef «*Ca} . Then we must have | « tXt' and for 

bcX\a, the mapping 

X \ 4 a , b } 4a,b}< 
A - í 1 

\ a b / 
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belongs to W« However oo « cT# a^g, R— f whereas oo 4* 1— 

(since dom oc « X and rank CG « 2), Hence rank d'& 2* Now 

since cf4» i*Xf we can choose acXcT such that 1 1 ^ I £ 2* 

Put B « a^f"1 and wri te 

B l \ \ / B \ a BjU a 

b i \ ' v a \ 

where the index se t K i s possibly empty• then 

/ B o B 1 B j v 

A2 = 
b l b k 

and so X € 1— . Since dom X « Xf we must therefore haw 

X « flT|i for some /I € W* However if b*B\a f then a|S * 

se b.</(l « b& « a, whereas aA « b ^ a^/J . Hence if R ^ 

is proper and completely semiprime then X $ 3-55 • 

We now proceed as in the proof of Theorem 8 by also 

letting B be a maximal element of S : if t X \ B | 2r 2f we 

choose s,t«X\B and let X be the mapping with domain Bus 

such that BX S t and X\ B * cfg. Then A, ft l ^ and so 

X « <T • &> for,some C # ̂  and «•» • W| this implies 

«P- • A, » A* ,so that Bg dom A* IS C and we find that B » 

« X\a for some aiX* To show Jl fi Si , choose b*# a and 

write 

<m 

D D i \ •• , CD\to)ua D^ч / D t 

a i Ч b V d i 
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where b 11. ©ien ^r * <%> * cTB # 3 r c i s f ana so ^ * 

* ^1 # -* ^or m m * * ̂  and ^ € W* It now follows that 

X\ b » (B\ D) y (B\ b) y a « dom ̂  fi X 

and thus X * X\b. Moreover if A e A and «^+ ̂ 41 we ha­

ve a contradiction similar to that indicated in the preced­

ing paragraph. 

For the converse we simply note that if R^ -» W then 

i,w = CQ • oc for some C € .2J and we obtain C » X| f u r t -

hermore i f X = cf^ * **> for some B c T& and i f X ^ S » 

then dom X + X and so dom A £ 4 for some 4 c JL • Hence i f 

J l s £ l and each of* equals i » (4 « JL), we have ec a 

* *"4* °̂  % R2E a E l d t h e r e 8 u l t follOWS. 

Qorollary. With the notation of Theorem S and if I de­

notes ui W* ̂ *W;4 * Ji } f then I is the only proper comp­

letely semiprime ideal of W» Moreover, if L^ denotes the 

X -class of 0 j containing t*j-> (that is, the set of all 

mappings from X onto itself) then I • WXIi, • 

To complete this section we briefly consider the exis­

tence of reflective ideals in transformation semigroups: 

that is, an ideal I such that ab & I implies bacl £5, 153• 

Theorem 10. If X is infinite, then none of *3^t $ x 

or <Pj contains a proper reflective ideal. 

Proof. Iffc (£4 I X I) is proper and reflective, par­

tition X into 4uB where 141 « | and IB| £ f , and fix 

some b€B. Now let C » %*±% ^® ai¥ subset of B\ b with 

cardinal C and put 4 » 4 a.| . Finally write 

- 443 -



, X \ A m± , ,X\C c. X 

«0 s ( J and fj » / ) 
^ b &± ' ^ b a£ / 

Then rank (ac/J ) « 1 but rank (̂ cc ) • | + 1. This proves 

the result for tf̂  and (P-$ the modification required for 

S^ is obvious. 

Theorem 11 . If I X I =- n **e #ZQ and S denotes any one of 

0 X , $ x or flj, then S n is the only proper reflective ide­

al in S. 

Proof. If o^, f3c S and rank (oc|S )<n when rank (floe)* 

* n, then both ©c, (I € (%,*, and we have a contradiction. Hence 

Sn is reflective in each case. 

To conclude the proof for Of- and ^ , 3e t r< n - 1 and 

note that if we write 

* • ( ! 

2 ... v - 1 r 1 

2 3... г r + 1 r + 2 

ß 
í 2 3 ... r 1 X \ 

\ 1 2 ... r - 1 r r + 1 ' 

where X s X\-fl,...,r| , then rank (oc (& ) s r whereas 

rank (|2a&) s r + 1| obvious modifications to «c and f$ al-

so e tablish the гesult for S^. 
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