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COШENTATIONIS MATЮШATICAl røІVЖBSITATIS CAIOИШJ 

19,3 (1978) 

NOШS OF MATIHX POfІЙS 

N„J. ÏOUГО, Praha 

Abstract; Let A be a square matrix satisfying IIAII £ 
£ 1, It •I! being an arbitrary operator norm* Upper bounds 
are obtained for lA131! in terms of the eigenvalues of A. 
The proof involves calculating explicitly the powers of 
the companion matrix of a polynomial p in terms of the 
roots of p. 

Key words; Norm, eigenvalue, companion matrix, re­
currence relat ion• 

AMS: Primary 15A24, 15A42 
Secondary 12D10 

It sometimes happens in applied linear algebra that 

one wishes to sum an infinite power series in matrices: 

for example, the matrix equation of Ljapunov which arises 

in control theory (see 111) 

(1) X - k* X A - Q 

has the unique solution 

(2) X = ! . A*s Q As 

3=0 

provided the eigenvalues of A have absolute value less than 

1 (here the matrices involved are Nx N and A* denotes the 

conjugate transpose of A). It would obviously be useful to 

be able to estimate the error involved in replacing the 
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infinite series (2) by the sum of its first m terms, say 

with respect to an operator norm II • II on the algebra of 

N x l matrices (i.e. the operator norm derived from some 
N norm on C ). We have at once the estimate 

. £ + s s M « A ,l m I Q II I A I m 

t 2. A* s Q A8 | * — — — * 
s=m 1 - t A * I II A I 

valid when 1 A*- II t A t < 1| however, this is plainly an 

unsatisfactory estimate. I A t and 1 A* I may be large 

and (2) may still converge rapidly (for example, if A is 

nilpotent). The spectral radius formula 

(3) lim II A mll 1 / m = U L , 

when lAlg denotes max -C t X I i X is an eigenvalue of A } $ 

suggests that we should look for an estimate for 1 A m H 

in terms of the eigenvalues of A J indeed, (3) shows that 

It A mt behaves roughly like lAl^ for sufficiently large 

mf but we need something more precise to get an estimate 

of the type we desire. Such a result can in fact be ob­

tained by quite elementary means. In order to state the 

result we introduce the quantities c(^,i),i>,i2Il» gi­

ven by the formula* 

(I , (!) ( - D * 1 * * * * . 
(4) c(i>f £> 4 

I 0 if I > V . 

1*heorem 1. Let %•% be an operator norm on the algeb­

ra M^CC) of N*N complex matrices and l e t A£lf-y(C) satisfy-

II All 4 1. 
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( i ) If \k\g £ r < l then.for m^N , 

I Am « * ( / _ J rm-N + 1 + 0 ( r m - N + 2 ) . 

More precisely. 

(5) 1 A^Ur^* 1 ^(""f*) (i * r)j -

(ii) If p(4) a 0 where 

p(z) * (2 - p-^ (z - ^D2) ... (z - ^ n ) 

and r^ - I f ^\ < l f 1£ ±&n$ then, for i 2 . n . 

(7) II A m U V n + l ( r l » r 2 rn> + OCr"* 2 ) 

where r « max«{ ̂ xt^'** # , rn^ anfl h-Cr^,... ,rn) denotes 

the sum of all monomials of degree j in r,f...fr . 

More precisely. 

I 4 m « ̂ ( - i ) m + Q + 1 2 (~l)3g e(n (g), 

(8) * 

n + 3g - m) g(rlf...frn) 

where the sum is taken oyer all monomials g in n yariab-

les whose degree ®g satisfies m - n + 1-4 <£g-6mf and 

^ (g) denotes the number of variables occurring in g 

with positive exponent. 

In particular in |ii) we can take p to be the cha­

racteristic polynomial of 4 to get an estimate involving 

only the eigenvalues of 4. 

4 closely related 'extremal problem was investigated 

by ?. Ptalk to an important paper [ 3] • He discussed the 

maximum possible value of I 4 1 for NxN matrices 4 aa?-
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tiaf̂ ring II4 1 & 1 and \L\% £ r<l 9 where now ( • 1 deno­

tes the operator norm on N-dimensional Hilbert space, and 

found an operator for which this maximum is obtained (the 

restriction of a unilateral shift to a certain N-dimensi-

onal subspace of Z )• A significant step in the proof 

consists in showing that one can take the extremal opera­

tor A to have the unique eigenvalue r; both this and the 

proof of Theorem 1 above depend upon certain technical 

facts about powers of companion matrices which we now des­

cribe* 

Let T be the companion matrix of the complex polyno­

mial of degree nf nil, whose roots are fj,***** @*n* ® i a t 

is, if p is the polynomial given by (6) and p is written 

„n-1 „»-2 
(9) p(s) « z + ^-l 3"" * + an-2z"" " + ••• + %t 

then in the case n = 1, T * f p ^ 3 , and for n > 2 , 

(10) T ш 

0 1 0 ... 

0 0 1 ... 

. ' . • • • • 

"
a
o ""

a
l ~a

2
... 

0 

0 

-Vl 

in fact (-1)
11
**

1
 times Here a*is a function of the & s 

the elementary symmetric function of degree n - i + 1 in 

(p-,,..., ̂  - and we regard T as a matrix-valued function 

of f
l f
...

f
p

n
. 

It can be seen from the form of T that, for any mat­

rix A, tt|e first n - 1 rows of TA are the last n - 1 rows 

2 1 of A, so that when we form the sequence T
f
 T , T

 f
 ... we 
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introduce only one new row at each step. Introduce the 

O 0 x n matrix T00 whose i-th row is the first row of fi-1 

(i = 1,2,..., T° = I). One finds that, for any m 2 0, tf* 

is obtained by taking rows m + 1 to m + n of Tm * 

Denote by t.^ the (i,k) entry of T°° (IS i <* oo , 

l-»k-»n), t ^ is a scalar function of (fii'^ifu^ Pt£k 

made use of the following fact. 

Lemma. For i£ n + 1, (-l)n t.^ is a homogeneous 

polynomial of degree i - k in *>-,,..,, (Pm with non-ne.ga-

tive coefficients. 

This Lemma has a slightly curious history. Pta*k pro­

ved the case k = 1 and conjectured that it was true in ge­

neral. At his request the late Professor ?. Knichal provi­

ded a proof of the conjecture, but since the proof was not 

published nor even circulated privately, the result has 

had a somewhat unsatisfactory status subsequent to Knich­

al #s death. Several mathematicians have asked how it was 

/ 

proved, and Professor Ptik therefore suggested finding a 

proof and placing it on record. In the course of the proof 

which follows we obtain relations which yield explicit ex­

pressions for the entries of, Tw
9 and also lead to the in­

equalities in theorem 1. 

The fact that tj-_ is a homogeneous polynomial of de­

gree i - k (for i.£ n + 1) can be proved directly from, the 

definition of T*® by induction on i. We shall concern our­

selves with the non-trivial part, the assertion about the 

signs of the coefficients. 

We begin by noting that the columns of 1°° are solu-

- 419 -



tions of the recurrence relation with characteristic poly­

nomial p| that is, for l-»k-»n and i-*l
f 

(11)
 Vn.k

 +
 •n-l Wl.k

 +
 '••

 +
 Vik » ° ' 

Indeed, the left hand side of (11) is the (l,k) entry of 

p(T)T
1 - 1

f
 so that (11) follows from the fact that p is the 

characteristic polynomial of T. 

Let f^ be the generating function of the k-th column 

of T*°t 

(12) f v ( » ) « 2L t i v z1 . 
K i s s l 1 J C 

We can suppose that I tf~*. | -* 1, l^-j-sn, so that l"—^0 

as m—*» CJO
 f
 which implies that the t ^ are bounded, for 

fixed values of the JJ
#
s, and hence that (12) defines an 

analytic function in the open unit disc. Multiplying (12) 

by a__
 4
z^ we obtain 

tf
 n—j 

a
n
_

j2
Jf

k
(z) = a

n
_. ^ i ^ t ^ ^ z

1 

for 0̂ » j-6n, a being defined to be 1. Sum this from j
 s
 0 

to n: by virtue of (11), terms in z
1
 with ±>n vanish and 

we obtain 
n
 i

 i-1 
q(z) f^z) « 3E z 2E C L . t. . . 

* i*l j=0
 n
~

J
 *

 J
»* 

(13) 

ffl
 ZІ
 гîl S n

-
І +
« ^ 

for 1.6 k£n, where 

n-i o 
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z

n
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Since t .j_ * efL (the Kronecker symbol) for lé j-én, (13) 

reduces to 

(15) f k (z ) » q ( z ) " 1 ( a ^ + a ^ z 1 * * 1 + . . - + a k z n ) 

» q ( z ) " 1 z k (q(z) - a k - 1 z n " k + 1 - . . . - aQzn) 

(16) a z k - z n + 1 q(z)"*1(ak - 1 + a k - 2 z + . . . + a ^ " 1 ) . 

Consider the function 

(17) K z ) « _f ( - l ) n " k ( f , ( z ) - z k ) . 

k=l * 
From (16) we have 

F(_) = - z ^ q U Г 1 å < - l ) l И c ( a l f , + . . . + a z*" 1 ) 
k=l 

«, -n+l_/_\-l *5r r T %n-i-l /-, _. . 2 . 
= -z q i z ; ___. (-l) a_t (1 - z + z -••• + 

i=0 x 

+ (-z) 1 1 " 1 " 1 ) 
« z n + 1 q ( z ) * 1 ( l • z ) " 1 l i V l ^ a ^ ! - (-a) 1 1 " 1 ) 

(18) i = 0 

= zn+1q(z)"1 (1 * z)"1 ( 2 . a^-l)11-1 - S a^" 1 ) 
U=0 x i=0 1 ' 

a z ^ q U ) " 1 ( l + Z ) " 1 4 q ( - 1 ) - q ( 2 ) l 

= z n + 1 (1 + z T ^ q C - D f(z)"* 1 - l i • 

Now q(z) * (1 - y ^ z K l - f>22^ *•* ^ " fnz^f s o t n a t 

q ( - l ) q ( z ) " a x ^ # # # ^ Wh#re x* » (1 • ^ j ) / ( l - $>£&)* 
n 

Writing x,x5 ... x - 1 a 2E, XTX 0 ... x. , (x4 - 1) and J- -s n .s^ J. ̂  j-x j 

observing that (1 + z)" 1 (x4 - 1)
 = ^./(l - m.z) we ob-

tain from (18) 
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F(z) « z11*1 2 (1 + f -̂  ... (1 + f j^) ^(1 -

(19) - f ^ ) " 1 ... (1 - f jZ)"1 . 

From this it is clear that F(z) can be written as a power 

series in z in which the coefficient of z1, i2r n + lf is 

a polynomial in ^f...f m with non-negative coefficients. 

Now it is clear from the definitions (17) and (12) of F and 

f^ that the coefficient of z 1 in P, i$> n + 1, is 

*P n-k 
3t (-1) t4v. It follows that the latter sum is a polyno-
k«l XK 

mial in the tf5#s with non-negative coefficients. If we group 

together the terms of degree i - k in this polynomial we will 

get precisely (-1)11""*" t ^ f for we know that t^lt... j t ^ are 

all homogeneous polynomials of differing degrees. Thus 
n*»k (-1) t.« is a polynomial with non-negative coefficients, 

as claimed. 

With a little extra effort we can find the entries of 

»JICO precisely. 

Theorem 2. The entries of T00 are 

(20) t i k 

fxk if láián 

51 c(-p(g),n - k + l)g if ÏŁn + lf 

8 

the sum keing taken over all monomials g in ^,,... f ̂  of 

degree i - k. 

Becall that the symbols ^(g) f c(i? fX) were defined 

earlier (see (4) and Theorem 1 (ii)| see also the note on 

page 429). 
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Proof. The case l_.i^n is trivial. For it_n + lf re­

turn to equation (18) and note that 

q(z)"1 - IT (1 - 0 .z)"1 - IT (1 + m .z + ®\ z2 +... 
j*i > J j=i > J > a 

= jf0
nj{fl'f2^--ifn)z,i 

where h*( f\fm%PrJ denotes the sum of a l l monomials of 

degree j in ^ 9 . « . 9 fn ( h 0 s l ) . (18) thus yie lds 

(21) F(z) « z n + 1 ( l - z + z2 - . . . ) * q ( - l ) £ h 4 z j - i f . 

Equating the coeff icients of z 1 in (21) we obtain, for 

ìľn + 1, 

П _ v • _ І—П—l 
_ (-l)n-Ч i k = (-l)1 _ n + q(-l) _ 
k=l 1 J C j=0 

(22) _ . ( - l ) n - Ч . t = (-l) 1 " 1 1 + q(-l) _ ( - l ) 1 - 1 1 " 1 - ^ , , 

As in the previous proof we use the fact that the t.
f̂ 

k ~ l
f
...

f
n, do not interfere with each others the right 

hand side of (22) is a polynomial in the y
#
s and the sum 

of the terms of degree i - k must equal (-l)
n
~* t., . To 

calculate this sum note that 

q(-l) * 0Q + 6X + ... + 0n 

where (f± is the elementary symmetric function of degree j 
111 $1****9

 !?n* ̂
e w
^*

sn
 "k° -̂---d the sum of the terms of a 

given degree 9 in the polynomial 

(23) (-l)
1
"

1
^ €0 + «_ + ... + tfa)(h0 - h% + ... 

(_l)i-^\ )# 

Let us think f i r s t which products $>J&*\ M-degree & are 
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defined. We must clearly have 0 £ 8 £ i - lt and then j must 

satisfy O^j^n, OS 8 - j-t»i - n - lf which is equivalent 

to 

(24) max 4 0 t 3 - i + n + l | ^ j ^ m i n { 3 fn J . 

Now consider how often a fixed monomial g of degree 9 ari­

ses in the expansion of (23). lach occurrence of g arises 

from a product d'ih* . for some j satisfying (24), and such 

an occurrence carries the sign (-1)1"11 *. If g contains 

i?(g) variables with positive exponent then each selection 

of j of them corresponds to an occurrence of g in the ex­

pansion of tfJu .: it follows that this expansion contains 

g/3Hg/\ times / / ̂  \ lis defined to be zero if j > 2> or 

j<0) f for j satisfying (24). This assertion remains true 

if j > d or j< 0f since the binomial coefficient is zero in 

these cases, and hence the coefficient of g in the expansion 

of (23) can be written 

%P} f»lg)\ /.vni-n-l+a-j (25) S f (*(«>) (-I)-"* 
j«d -i+n+1 \ j / 

Observe that if 9 - i + n + 1^0, 9 . + 0 (i.e. 0 < 3«c i - n), 

(25) equals (1 - l)*^ g' « 0, as we should expect from (22). 

Putting 0 » i - k in (25) and multiplying by (-l)n t we 

deduce from (22) that, for iZn + 1, l_*k-fcnf 

m g *j=n-k+l \ j / / 

where the sum is taken over all monomials g of degree i - k« 

This is precisely (20). 

We can deduce particularly simple expressions for the 
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entries in the first and last columns of f w (these can al­

so be obtained directly from equations (15) and (16)). from 

(4) we have e(*»>fn) **(***) (-l)11***1, and (20) then shows that 

til is t*le avm °^ a ^ monomials of degree i - 1 in 0^,..# 

••• fn which involve all n variables with a positive expo­

nent. This can be written (for it n + 1) 

(26) t i l - ( - D ^ f i ^ . - f n h i . I h l { f 1 , . . . , ? n ) . 

And again from (4), e(i>fl) « 1 for all V £ n$ so that, for 

i£n + lf 

C27) t i n * h i - * <fi» — t ^ n > . 

Even without calculating any of the coefficients e(**,k) we 

ean make a striking deduction from Theorem 2 s in any one co­

lumn of T 0 0 the coefficient with which any monomial occurs 

depends only in the number of vapiabl .es occurping in it and 

not on its degree. Let us illustrate this odd property by 

inspecting the second column of Tm in the case n * 3. The 

(4,2) entry is -( ^i^2 "*" f*2 ?3 * ^3 P 1^: ** -follows that 
5 3 the monomial ^i mtf occurring in the tenth row, also has 

2 coefficient - 1. On the other hand, since the monomial jo-. 

occurs with coefficient zero, there can be no pure powers 

of a variable anywhere in the second column. The only re­

maining type of monomial is one involving all of m^, a^t pit 

if we calculate the (5,3) entry of Tm we find that it con­

tains a term -2 f^ ^>2 f%* afl<a thepefope all monomials of 

this last type in the second column occur with coefficient 

- 2. And in general, as soon as we know the first n + k 
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entries in the k-th column of f *° we can write down any 

subsequent entry without calculation. 

Proof of Theorem 1. Ve make use of a simple but sur­

prisingly powerful observation of Z« Dostil £23. Let 4 sa­

tisfy the hypotheses of Theorem 1 (ii) CD 4 Jl £ 1 , p(4) = 

= 0); then, for m2.0f 

(28) ^sw* 
fo see t h i s , introduce thenNxN matrix 

H(A) = 

,n - l 

Since p(4) = 0, 4 n = - a % - »n-V - ... - a
n«i 

hence 

A*"1, and 

H(4) 4 • 

~ao % _al A - an-l A 
n-11 

= (т<a I^ЖÍA), 

where f & 1» is the usual Kroneeker product of matrices. It 

follows, that H(4) 4 m = (f21® 1^) H(4), and on equating the 

NxNv blocks in (1,1) position we obtain 

4 m s . t Imt + t . å + . . . + tw 
Ł П - 1 

"in+1,1 *N wm+l,2 A •*• v m+l,n m 

Properties of operator norms then immediately yield (28). 

Since (-l)
n
~ t ̂  . is a polynomial in ?i»-»»f p

n 
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with non-negative coefficients, (28) implies 

(29) l * - * ^ - ! ) " ^ ! . * . 

the dash indicating evaluation at ^Txf***9Tn^f ri s'?i' * 

% Theorem 2, t' ., . is the sum of all monomials in r-̂ 9««« 

• ••9rn with Bg -« m - k + 1, each multiplied by the coef­

ficient c(i>(g)9 n - k + 1). "Writing k-=m- 0g + lf we 

obtain 

2. (-l)n~kt:+1 t = -t 2 (-l^^et^tg), 
(30) k = 1 ' *=1 « 

n + Bg - m)g 

where the inner summation is over all monomials g in 

(rlf...frn) with 3g = m - k + 1# Combining (29) and (30) 

we obtain (8). 

To see (7), observe that the term of lowest degree 

on the right hand side of (29) occurs when k = n, so that 

U " l * t ^ l i B + o(^-**>. 

(7) is an immediate consequence of this and (27). 

Proof of OOheorem. 1 (i). lather than deducing part (i) 

from part (ii) we find it simpler to return to inequality 

(29). Suppose, then, that \k\$ & T and take p to be the 

characteristic polynomial of Af so that n * N and v± * 

« l^^l^r, 16i.6N# Since the right hand side of (29) ifl 

a polynomial in r^f •••9r^ with positive coefficients, it 

is not decreased if each r^ is replaced by r j we can the­

refore obtain an upper bound for 1 Am I by evaluating 
JL W.Tr 
2L (-1) * t + 1 k with each f^ equal to r. With this 
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choice of f± (19) shows that 

N 

0=1 
Пг) ш z*

+1
 r 2 (1 + г)*

5
"

1
 (1 - vz)~3 

j=l 8»0
 V
 8 ' 

Equating coefficients of z
m
 , mi.N, we have 

£ C-l)N~k
 W k - r**

1 2 1 (• - M + J) (1 + r) 
k=l m + 1» k j«0 I j / 

and (5) follows. 

The remaining inequality in Theorem 1 follows from (7) 

and the fact that the number of monomials of d egree j in N 

variables is 

J 
i 

(J VV) 
We conclude with a discussion of how good the estima­

tes of Theorem 1 are. We note firstly that they only give 

information if, roughly speaking, r is small or m is large: 

otherwise the bounds obtained are not even less than 1. For 

particular operator norms one can eertain]ly do better; for 

instance, in the case of the operator norm on N-dimensional 

Hilbert space bounds for 8 A II are obtained in £4] which 

are always less than 1 when r<l# However, for an arbitra­

ry operator norm, the bounds (5) and (8) are in a sense 

sharps(5) and (8) hoM with equality for a suitable choice 

of I • I and 4 and sufficiently small r. This is a conse­

quence of another observation of Dost^l's, namely, that (28) 

holds with equality if we take II • 1 to be the operator norm 

on i^Cn) and A to be the companion matrix of p. In this 
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ease kt^, x**»9**m*x n2 ^ the first row of ̂ a
l and sin-

ee | 4 1 is the maximum of the absolute row sums of A, we 

infer the opposite inequality to (28)* Thus, if we take 

the roots of p to be real and non-negative we have equali­

ty in (29)• Since the right, hand side of (29) and (8) are 

equal, (8) also holds with equality when T s A, and provi­

ded we make r small enough, the constraint ft T II ̂  1 will 

also be satisfied. 

1 should like to express my thanks to the Mathematical 

Institute of the Czechoslovak Academy of Sciences for its 

hospitality and financial support during the year 1978, 

when this work was carried out. 

Note. Z. Ibata1! has pointed out to me that formula 

(4) for the quantities c{P t£ ) can be simplified. If we 

write / f U (** ~ X W /**" 1 ) , I* j «< V , we find that 

( _ iy£-H / „ - 1 \ ^ l j f e i ^ ^ 

.tun 4 ^ - i 7 

l o otherwise. 
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