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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

19,2 (1978)

ON CONTRACTIVE MAPPINGS IN METRIC SPACES
Milan R. TASKOVIE, Beograd

Abstract: A number of authors have defined contrac-
tive type mappings on a complete metric gpace X which are
generalizations of the well known Banach s contraction,
and which have the propert§ that each of such mappings
has a unique fixed point. In this paper we shall prove the
further generalizations of the Banach contraction mapping
principle.

Key words: Generalized contractions, fixed point
princip%e. ’

AMS: 4TH10

The purpose of this paper is to consider the opera-
tors T on a metric space (X,@ ) which are not necessarily
continuous, First of all we recall the following definiti-
ons,

Let T be a mapping of a metric space X into itself,
The space X is said to be T-orbitally complete iff every
Cauchy sequence of the form iTni(x) li=1,2,...}, xeX,
converges in X, where Tl(x) = Tx and ™x = (™" 1x) for n =
= 2,3,¢e¢s « The mapping T is said to be orbitally continu-
ous iff 1’,}2‘% Tnix = u implies 4'1_:'!.:1:00T(Tnix) = Tu for each
x € X.

Theorem 1. Let T:X—> X be @ mapping on X and let X
be a T-orbitally complete metric space. If T satisfies the

following condition: for every x,ye X, there exist real
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numbers o, (x,y) = oy, @(x,y) = (3 such that, €y * Gy +
+oy>p and (f- pZ0, sup (B-erp) (o +oy)” 1.
= A,€[0,1)) or (=~ x320, sup (B-aqy)acy + ccz)
= -3. €[0,1)), and
(1) ctlgof'rx,l‘y] + & elx,Tx] + «30[y,Ty] +

+ o min {o [x,Ty] ,ply,Tx1} 6 3@ (x,y];
then for each xe¢ X, the sequence (T™x) converges to a fixed
point of T.

Proof. Let x€ X be arbitrary. We shall show that the

sequence of iterates

() x,=x, x, = M™x,_q)y n =1,2,3,...,

at x is a Cauchy sequence. Since X1 =X for some ke N
immedimtely implies that (x,) is the Cauchy’s sequence, we
can suppose that x,_,% x for each neN. By (1) for x =
=x,_,8endy=x, we have

1 @lxy Ty 1 + @@l 1,5, ] + 3@ [y ¢
+ o  min {s"[ﬁ-l”&ﬂl] 03 = «j0lx ,x 11+

+otoelx, gyx )+ ogelx,n 6Bl ;,x,]

i.e.
«,

(1
@ Lxpxylé ——— g safxn 15 & Aelx, %] .
Proceeding in this manner we obtain

PLlxx1& Aelx 1,x 3% ... & ATeIx,x] .

Hence for any s€ N one has
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n+s-1

n -1
@ [xyixp,a] £ 12=1 ® [x;,x5,,] & A7(1 -A)) so[x,rxJ .
Since 1im A1 -2;)7" = 0, it follows that (2) is a
Cauchy sequence. X being T-orbitally complete, there is

some § € X such that 13 ﬂm},iz'rnx. To prove T¢ = § ,
consider the following inequalities, for x = ’l’nx, and y =

= f H
o @[T £, 7€) + o, @[T, 2]+ o, @[§,25) +
+ & min{p [ ™x,2§ 1, o™ x,f1)6 pp [ °x,§ 1.

Hence, letting n tend to infinity, it follows @ L§ ,T§] =
=0, i,e. ®§ =§ , which concludes the proof.

This proof is made under the assumption that B - xa=
Z 0 ( wmiy “’1 + c‘3>0). We can also prove the Theorem
when (L - ec3=0 (= o¢; + «¢,>0) in a similar way, us-
ing the fact that distance is a symmetric function.

Theorem 2., Let T:X—> X be an orbitally continuous

mapping on a metric space X which satisfies the following

conditiomrs
(3) o, plTx,Tyl + uqu[x,rxl + «3ply,Ty] +
+ o(4min{p[x,'1‘y1 y@ly,TxJi<fB o[ x51,

whenever x4y and o, + &, + cc32($ and 3 - &, >
> OV(L - &3>0 (o5, (3 are real constants). If for so-
me Xx € X the sequence {TnxOZv has a cluster point f € X,
then f is a fixed point of T.

Proof.’ If Tr"lxo = Trxo for some re N, then Tnxo =

= Trxo = f for all nZ r, and the assertion follows, Assume
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n.
now that Tr"lxo-il Trxo for all reN, and let ,1lim T lxo =
i2o0

= § . Then for ‘I'n'lxo, ™x € X, by (3)

“1§?r'1n’o'im1xo] + «Z‘p[‘rn'lxo,l’“xol +o(3so[Tn!°.

P 1x1 + o min fp (P 1x 7% 1,0 =
= (e¢y +ct3)s°[Tnx°,Tn+lx°] + eczsc[f‘-lxo,Tnxol <
<pef Tn"lxo,Tnxo ]
i.e.

L% ,1%"1x ) B-<p (1 ,1x 1£elr" 2x_,™x ]
So 0? 0 <d1 +“3 ? xo, xo -9 o!? 0

Hence

el r“xo,'r“”xc] <@ [Tn'lxo,TnxOJ .

Therefore, 4@ [ Tnxo,‘l’ﬁlxo:l; is a decreasing and hence

convergent sequence of positive real numbers. Since

n N.+
lim o[ iy ot

1 .+l

x,) = @L[f,2§] end {;a[ Tnixo,Tn1+ Xol}c
€ {§’ C Tﬂxo"‘t'm]"o]}’

it follows that

(4) 1gmp[1“1xo,'£n+lx°]= plLg,T§].

n.+1 n.+2
Also, as 1im T * "y = Tg , lim T ?
i ° i

x°='1’2§' and

n.+1 s +2
LolT %1y 1 e {p £ P, 70,13,
by (4)

(5) @LTE.T°§) = ol§ ,751.

Suppose that Sa [§ ,Tg] > 0. Then by (3) we have
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el ,T2§J< eLf.T§1.
which contradicts (5). This proves that ‘I? = g . The
proof is complete.

The above proof is made under the assumption that
B- x,>0 ( == o, + oc37 0). We can also prove the
Theorem when (3 - ec3>0 (mmd oc) + x2>0) in a similar-
way, using the fact that distance is a symmetric function.

The results were presented on lectures together with
examples and connections with previously obtained theorems
(see 1] and the references there), while the author was

visiting the Charles University, January 1978.
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