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COMffiNTATlONBS mTHEMATICAB UNIVIRSITATIS CAROLINA! 

19,2 (1978) 

NONLINEAR PERTURBATIONS OF LINEAR OPERATORS HAVING NULL-

SPACE WITH STRONG UNIQUE CONTINUATION PROPEHTX 

(Preliminary Communication) 

Svatopluk KJČÍK, Praha, Peter HESS, ZOrich 

Abstract: We are concerned with the existence of one 
or multiple solutions of various problems for nonlinear 
differential equations which can be reduced to an abstract 
operator equation of the form Lu + G(u) s f ina real Hil-
bert space H, with L:HaG(L)—> H being linear ani nonin-
vertible, G:H—p H nonlinear and f € H given. 

Key words: Nonlinear operator equations, strong uni­
que continuation property. 

AMS: 47H15 

Let Q denote a bounded domain in R^ (N£l)t and let 
2 H » L (Q), with norm 1-1 and inner product (.,.)• Let L: 

:H3 D(L)—*• H be a closed linear operator with dense dom­

ain D(L) and closed range R(L). We assume that 0 is an ei­

genvalue of L and of its adjoint operator L* , and that for 

the corresponding eigenspaces , 

E(L) « N(L*) 

and dim N(L)< + oo « Hence H admits the orthogonal decompo­

sition 

H a N(L)® R(L). 

We set H-̂:-- N(L)f H2:= R(L), and denote by Pĵ  the orthogo-
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nal projection of H onto H^ (i » 1,2). An element fe H 

may thus be decomposed into f « f-, + fgt whe*** % s ̂ i^# 

The restrictioa Ls* LjH t with .0(11) « DtDnHji is a» al­

gebraic isomorphism in H** Its inverse (the so-called 

ri^it inverse of L) will be denoted by T• We assume that 

T;H2—* H 2 is compact. 

Our main assumption on the functions in N(L) is the 

following "strong unique continuation property": 

(SUCP); H(L)cL*(Q), and there exists f > 0 such that 

for the function y t 

E H-^jp(e) = sup meas 4xe Q; I w(x) t < e I * 

wcN(L) 

ftwfl^l 

y( e ) = o(e* ) as e—** o+. 

Remark. The usually imposed "unique continuation pro­

perty" demands that the only function w«N(L) vanishing 

on a set of positive measure in Q is w » 0. As dim N(L)< 

< + $0 this implies that y(e>)— * 0 as e—^0+. Thus 

the (SUCP) prescribes the speed of convergence. 

Let g;R—*R be a continuous function with finite li­

mits 

g.;« lim g(s). 

Without restriction we may assume g_4 0i4g+., Suppose the­

re exists (f > 0 such that 

g(a)^g+ V ®2<T 

g(s)ig^ Vs|-<f. 

For a £ of we set (with the same ® as in (SUCP)) 
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^(aK:** lim inf f l4f min (g(s) - g . ) , 8 • §-**i» > A«C%f 3 

^ (a ) s« lim inf f 1 + f min (g . - g ( s ) ) . 8 - I-***© f /i€C-|ra,3 

Let G:H—«• H be the Neu^rtskii operator associated with g: 

G(u)(x):» g(u(x)) f x#Q f 

for any function u defined on Q. The napping G is conti­

nuous and has bounded range in H. 

Let 

S:=4f1€H1t (flfw) £ J (g^w* - gjT)dx, V w i ^ l . 

Here w (w~) is the positive (negative) part of the func­

tion wf i.e. w « w -w~. Note that Sc H^ is nonempty, boun­

ded, closed and convex. 

Theorem 1. Suppose 

(A) D{L)cL*(Q)f and T:H2~-* L***(Q) is continuous. 

Suppose further that either 

(oO) the functions in N(L) have constant sign in Q 

and y(a) + « T^
aL s * °® (for a suitable a i < f ) , ©3* 

(($) the functions in N(L) change sign in Q and at 

least one of y(a)+i 9
b(a). is = * CD (for a suitable a & 

Z<T)* 

Then to each f2* H2 there exists an open set Bf c H-̂ , 

Sf 3 S , such that r2 
(i) the equation 

(1) Lu * G(u) = f 

has at least one solution for f * f^ + f2 with f., c % ; 
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(ii) the equation (1) has at least two solutions 

for f « f 1 + fg with f-̂ t Sf \ S. 

Theorem 2, Under the assumptions of Theorem 1, the 

range of L + 0 is closed in H. 

Hence the assertion (i) of theorem 1 is in fact valid 

for f. t S ^ • A variant of Hie or em 1 is 

Theorem 3. Instead of (A) let the following regula­

rity assumption be satisfied: 

(A#) ISiere exists m»0 such that for any solution u€H of 

Lu * f with f c Lm (Q) we have u« L°°(Q) and 

1 P̂ u L A m If B_ # 
£ C Q 00 

Suppose either (oC ) or ((I). Then the assertions of theo­

rem 1 hold, provided f2f L*>(Q). 

It is possible to apply the above abstract theorems 

to a large variety of examples, such as the boundary value 

problem for ordinary and elliptic differential equations, 

and the problem of existence of periodic solutions of the 

nonlinear heat equation and the nonlinear telegraph equa­

tion. The proofs and the investigation of these applicat­

ions will appear elsewhere. 

The main part of the results was obtained while the 

second author was visiting the Charles University, the de­

tailed paper has been submitted to "Nonlinear Analysis. 

Theory and applications1*. 
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