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ЩSTÏÜBUTIVI STIINIH QUASШROUPS OF OІШER З 5 

Tomáš KEPiCA, Praћa 

Abstract; All distributive Steiner quasigroups of or­
der 243are described. 
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The class of distributive Steiner quasigroups is inte­

resting from the algebraic as well as combinatorial point 

of view. It plays a prominent rBle in the structure theory 

of distributive groupoids, distributive quasigroups, trime-

dial quasigroups, F-quasigroups, etc. Although several rela­

tively deep results concerning distributive Steiner quasi­

groups are known, the systematic treatment is not availab­

le. For example, the complete description of finite distri­

butive Steiner quasigroups (these have necessarily 3 ele­

ments) is known only up to 3 elements. It is the purpose 

of the present note to describe distributive Steiner quasi-

5 
groups of order 3 . In particular, i 

formulated in [3 » p. 441 is given. 

5 
groups of order 3 . In particular, an answer to a question 

1. A groupoid G is said to be 

commutative if it satisfies the identity xy = yx§ 
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- distributive if it satisfies the identities x.ys B xy.xz 

and yz.x * yx.zx, 

- idempotent if it satisfies the identity x = xx9 

- medial if it satisfies the identity xy.uv « xu.yv, 

- symmetric if it satisfies the identities x * y»yx and x a 

* xy.y. 

Obviously, every symmetric groupoid is a commutative 

quasigroup, every symmetric distributive groupoid is idem-

potent and every medial idempotent groupoid is distributive. 

The symmetric idempotent groupoids are called sometimes Stei-

ner quasigroups (due to the obvious equivalence between the­

se groupoids and Steiner triple systems). Thus the distri­

butive Steiner quasigroups are just groupoids satisfying 

the identitites xy s yxf x « J.JX and x.yz » xy.xz. 

Let G be a groupoid. We denote by p^ the least congru­

ence of G such that the corresponding factor is medial. Fur­

ther, if M is a non-empty subset of Gf then [Ml is the sub-

groupoid generated by M. Finally, ©(G) is the least cardi­

nal number with ©(G) * IM1 for a non-empty generator set 

M of G. 

1.1. Rroposition. Let G be a distributive Steiner qua-

sigroup. 

(i) If atbfcfdf#G and ab.cd
 s ac.bd then the subgroupoid 

[a,b,c,d] is medial. 

(ii) For all a,b,c,eG, the subgroupoid [afbfc!l is medial. 

(iii) If o(G)4 3 then G is medial. 

(iv) PQ is just the intersection of all maximal congruen­

ce of G# 
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(v) If G is finite then o(G) * o(G/p) and t<*l • 3 n for so­

me 04 n. 

(vi) t G| Z 81, provided G is not medial, 

(vii) G is finite, provided it is finitely generated. 

.Proof, (i) See Cl, Theorem 8.6 3 or 14, § 11.5, Thi-

orlme 1J • 

(ii) and (iii) These assertions are immediate consequen­

ces of (i). 

(iv) See C4, § V.5, Proposition 6] . 

(v) See [4, § V.5, Proposition 7, Proposition 3 J • 

(vi) See £4, § VI.6, Lemme 2 3 . 

(vii) See £4, § ¥.2, Thioreme 2 J . 

In this paper, 3c t 2(3) designate the three-element 

field with elements 0,1,2. Put x*y » -x-y for all x,y* Z(3). 

Obviously, Z(3)(#-) is a distributive Steiner quaaigroup 

and we shall denote it by T{2) (it is visible that T(2) is 

a free Steiner quasigroup of rank 2). 

1.2. Proposition. Let G be a medial distributive Stei­

ner quasigroup such that o(G) * n is finite. Then G is iso­

morphic to the cartesian product T(2)n"^. 

Proof. The statement is well known and easy. 

Let G be a distributive Steiner quasigroup. Define a 

relation qQ on G as follows: a q b iff the subgroupoid 

C afb,x,y3 is medial for all x,y€G. According to 1.1, • q b 

iff ab.xy » ax.by for all x,ycG. 

1.3. Proposition. Let G be a distributive Steiner qua­

sigroup. 

(i) q*. is a congruence of G. 
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Iii) If H is a subgroupoid of G such that H is contained 

in a block of q«f then H is a block of a congruence of G# 

Ciii) If G is finite and r is a congruence of G such that 

rnq*. » d,jf where d« is the diagonal congruence of Gf then 

r - dG. 

Proof, (i) See C4, § IV.4, Proposition 1J or £3, Lem­

ma 2.73 . 

(ii) See C4, § IV.9» Proposition 3 3 or £3, Lemma 2.143 . 

(iii) See C3» Lemma 4.31 • 

1.4. Proposition. Let G be a finite non-trivial dis­

tributive Steiner quasigroup. The following conditions are 

equivalent: 

(i) G is subdireetly irreducible. 

(ii) At least one of the blocks of q« contains exactly 3 

elements, 

(iii) Every block of qu contains exactly 3 elements. 

(iv) Every block of q« is a subgroupoid isomorphic to f(2). 

Proof. See C3, Satz 4.43 (the proposition is an easy 

consequence of 1.2 and 1.3). 

A distributive Steiner quasigroup G is said to be nil-

potent of class at most 2 if the factor G/q is medial, i.e., 

pG£q,j. It is visible that the class of distributive Steiner 

quasigroups nilpotent of class at most 2 is a groupoid vari­

ety, ©lis variety is determined in the variety of distribu­

tive Steiner quasigroups by the identity ((xy.uv)zHw(xu. 

.yv)) « ((xy.uv)wKz(xu.yv)). 

1.5. Proposition. Let G be a distributive Sfcainer qua­

sigroup with o(G).6 4. Then G is nilpotent of class at most 2. 
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Proof. See t4» § V.3, fhiorime 13 or C3, Satz 2.4 3 . 

The reader is referred to tl3f£33 and £4] for further 

results and details concerning distributive (Steiner) qua-

sigroups. 

2 . 
2*3-» Ml§&* L e t ^ ^ a f ie ld and ? « F*. Let W be a 

subspace with dim W = 3 of the vector space ? . 1:hen there 

exis t s a non-zero element a « ^ f t x » ^ ' a 3 t A 4 ^ € v s u ^ t h a * 

the elements <a^fOfO,ai.> f <0 fa2,aj f0> f < a-,84,090>9 

<0 f0 fa^,a2> » <a2 fO,-a^,0> and <O fa l fO f-aj> belong to W. 

Proof. The proof wi l l \B divided into three s t eps . 

( i ) Suppose that there is c€ F such that x2
 s ex*., when­

ever < x^jXgiXjjX. > a W. Let A be the set of a l l ^y^t y 2* 

y«jfy4> from ? with y2 = ey*. Clearly, A i s a subspace of V 

and WfiAS?. But A4*¥ and dim W a 3 . Hence A * W and we can 

put a * < O fO fl fc> . 

( i i ) Suppose that there i s d 6 F such tha t x» * dx2, when­

ever < x. jXgfX^jX^ > e W. Similarly as in ( i ) , we can put 

a s <O fO fd fl> . 

( i i i ) Suppose that neither ( i ) nor ( i i ) may be applied. 

Define a mapping f of W into B = F by f(< X^^t****^ ) * 
s < Xj.,x2> . Clearly, f i s a homomorphism and, taking into 

account the hypothesis, i t i s easy to see that dim f (W) = 2 . 

Hence f(W) = B and there are two elements ufv€W such that 

u =<! ,0 ,UpU.> and v s <O fl fv^ fv^ > . Since u fv are inde­

pendent, there i s z * < %f z 2» z 3 , z 4^ € w s u c h t h a t * u » v » a I 

i s a basis of W. We can assume that z^ » 0 = z 2 . Now, we 
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must dist inguish the following two caaes : 

( i i i 1) Let Zj « 0. Then z44« 0 and we can aeeume that z 4 « 

« 1 and u 4 * 0 « v 4 . Put a « <O f l t irj f-Uj > . Then the e l e ­

ment* < a^ f0 f0 fa4> « <0 f0 f0 t-Uj> » -**jZf <0 ,*2 ,a j ,0>« 

« < 0 f l t i r j f 0 > » v t < a j f a 4 f 0 t 0 > * <Vj f-Uj f0 t0> « VjU-Ujir, 

< 0 f 0 f a i f a 2 > « < 0 f 0 , 0 f l > * z, < a 2 t 0 f - a 4 f 0 > * < l f 0 ,Uj f 0>» 

« u and <0 fa^ f0 t-aj> » <0 f0 t0 f-Vj> « -VjZ belong to w# 

( i i i 2) Let « j# 0. I s can aeeume tha t Zj * 1 and uj « 0 * 

* Vj . Put a » < l |Z 4 f -v 4 f u 4 > . Then the elemente <a^ f0 f0 ta4> 

» < l t 0 f 0 f u 4 > « u f <0 t a 2 , a j f 0> « < 0 t z 4 , - v 4 t 0 > « s4* -*4*t 

< a j»a 4 f0 f0> » <-ir4 fu4 f0 f0> « -v4u+u4vf <0,O fa l fa2> « 

«<O f 0 f l f « 4 > « z , < a 2 t 0 t - a 4 f 0 > « <z 4 f O f -u 4 f 0> • z4u-u4z and 

<OfH|jlfOf-aj> = <0 t l t 0 t i r 4 > » v belong to W. 

3 . Throughout th i s paragraph, l e t G(+) be an abelian 

group eueh that 3x « 0 for every x€ 0 and F be a t r i l inear 

mapping of G(*) ( i . e . f F i e a ternary operation on 0 eueh 

that G(+fF) ia a ternary r i n g ) . Coneider the following con­

dit ions : 

(1) F(x t x t y) « 0 for a l l x f ycG. 

(2) F(x tF(x ty fx-y) tx-y) - 0 for a l l x fy€ G. 

(3) F(x fy-F(x fy fx-y) tF(x fy tx-y)) « 0 for a l l x fy€ G„ 

(4) F(x fy fx-y) • F(y tx fx-y) * 0 for a l l x f y*Q. 

(5) F(x fy tz) * F(y fx fz) • 0 for a l l x ,y f z€G. 

(6) F(F(x fy fx-y) fz fu) * 0 * F(z fu fF(x fy fx-y)) for a l l x fy t 

z t u# Q. 

(?) F(F(xfyfz)fufv)=- 0 « F(u fv fF(x fy fz)) for a l l x fy fz fu f 

V€ G. 
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farther, we shall define a new binary operation # on 

G by x $ s ~x -y + F(xfyfx-y) for all xfy# G. 

3»*» Fyopoaition. (i) G(itO is a Steiner quaaigroup, 

provided the conditions (4)f (2), (3), (4) are satisfied. 

(ii) G(s|c ) is a distributive Steiner quasigroup, provided 

the conditions (5)f(6) are satisfied. 

Proof • lasy. 

Put K(xfyfz) * F(xfyf«) + F(yfzfx) * F(zfxfy) for all 

xfyfzaG. It is visible that K is a trilinear mapping of 

G(+). 

3«2« Lemma. Let the conditions (5)f(6) be satisfied. 

Thens 

(i) For all xfy,ufv a Gf ((x#y)# (u#v)) - ((x*u) * 

*(y*v)) « K(xtyfu-v) + K(u,vfx-y). 

(ii) For afb€Gf a %^y b iff K(a-bfxfy) • 0 for all x, 

ycG. 

(iii) Q,Qf0) is * congruence of both G(# ) and G(+)§ the 

corresponding subgroup is equal to 4 xtG) K(xfyf2) « 0 for 

all yfzf G 1. 

Broof. lasy. 

3»3* Proposition. Let the conditions (5) and (7) be 

sa t i s f i ed . Then G(:# ) i s a d i s t r ibu t ive Steiner quasigproup 

nilpotent of class a t most 2. 

Proof. Use 3.1 and 3.2. 

3«4. Lemma. Let H(+) be a subgroup of G(+) such that 

F(a fx fy) f F(x f a f y) , F(x f y f a)aH for a l l aeH and x f y a G . 

Define a re la t ion r on G by x r y i f f x-y«H. Then r i s a 

congruence of both G(s|6 ) and G(+). 
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Proof. Evident. 

4. Let 4 An be a natural number and m = n - 1 •* (n )• 

Denote by M the set of all ordered triples < jfkfl>sueh 

that 14B j< k< 1-^n-l. Then there exists just one bijeetive 

mapping f of the set 4 nfn+lf...fm J onto M such that if n & 

.4i<i#^iaf f(i) » < j,kfl> and f(i') * <j
#
fk%l

#> then ei­

ther j < j # or j * i \ k<k' or j * j #
f k » k'f 1<1

#. Put 

G ° Z(3)m and define a trilinear mapping F of the group 

G(+) as follows: Let a = <a^f... fam> , b - <blf ...fbm> f c * 

» <c^,...,c > c G. If nA i-sm and f (i) • <jfkfl> then the 

i-th component of F(a,bfc) is equal to (a^b^ - ̂ .â Je-̂ l if 

l^i^n then the i-th component of F(afbfc) is equal to 0. 

It is visible that F satisfies the conditions (5) and (7). 

Now, consider the groupoid G(JK ) defined by x^y * -x -y + 

•i- F(xfy,x-y). By 3.3, G(*c ) is a distributive Steiner quaei-

group nilpotent of class at most 2. In the following, we 

shall use the notation T(n) for G(* ). 

4*^* Proposition, (i) T(n) is a free distributive 

Steiner quasigroup nilpotent of class at most 2 of rank n. 

(ii) If a =<alf...fam>, b - <b 1 § ...lbJft> « T(n) then a q b 

iff a t « b1,...fa|1^L « b n - r 

Proof. Apply t3, 5.4 - 5.8 3 and 3.2 (ii) (see also 

[2, Theorem 9AJ). 

4.2. Proposition. Let n = 5 and r c q ^ ) be a congru­

ence of G(* ) * T(5). Then every block of <lo(*)/r e o n t a i a a 

at least four elements. 

Proof. We have m = 8 and f(5) • <1»2»3> » f(6) s 
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* <lf2,4> t f(7) • <l,3f4> , f(8) « <2f3f4> . Put A » 

= { < a^,... ,aQ > € G | a^ = a 2 s « j * a ^ = 0| and B « im e 

€ G I a r 0 | . By 4.1 (ii)f A is the block of ^ Q / U ) contain­

ing the element 0. Since ^^trit*)! Bfi-A. Moreover, A(+) is 

a subspace of the vector space G(*) over 2(3) and dim A(+) = 

= 4. On the other hand, F(afxfy) = F(xfafy) = F(xfy,a) » 0 

for all ae A, x fycG and it is easy to see that B(*) is a 

subspace of G(+)f too. It follows firom 3«4 that x r y iff 

x-yg B# Denote by g the natural homomorphism of G(iO onto 

G(*)/r = H(sf<). Obviously, g(A) is contained in a block of 

%(*)» and hence th# assertion is clear in case dim B(+)-&2. 

Further, if dim B(+• ) • 4, then B = A, r = %(^) *»d H C * ) 

is medial, since G(*. ) is nilpotent of class at most 2. How­

ever, t HI = 81 and <1H(^\
 s H(#* )x.H(a|c ). Thus we can assume 

in the rest of the proof that dim B(+) = 3. In that case, 

g(A) contains exactly 3 elements. By 2.1, there exists a non­

zero element <0f0,0f0fa*fa2f&3f«j> * B such that the ele­

ments a = <0,0f0f0fa3fa^f0,0>fb = <0f0f0,0fa2f0f-a^f0>f c = 

= <0f0f0f0,alf0f0fa4> , d = <0f 0,0,0f Ofa2>a3,0 >, e » 

= <0f0f0f0f0fa<1>0f-aj> f h = <0,0,0f0f0f0falfa2> belong to 

B# Put x =<a«Lfa2fajfa.f0f0f0f0 >. Then x^A and it suffices 

to show that g(x) % ( ^ \ g(0)» We must prove that (0#x) 3* 

3K(y*z) r (0*y);*c (x*z) f i.e., ((0* x) % (y * z)) -

- ((0*y)$ (x*z))e B for all y,z€G. However, ((0*x) # 

* (y*z)) - ((0#cy)* (x*z)) = F(zfyfx) + F(xfz,y) • F(yfx,z) 

by 3.2 (i). Let y = <y^f ...fy8> f z = <z^f...fZg> and w = 

= <w^,...fWg> = F(x,yfx) + F(x,zfy) + F(yfx,z). We have w^ = 

-s w - w = w a o and 
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w5 - ( y i a 2 - a l y 2 ) z 3 * ( < ll22 - V i ^ * ( z # 2 - H*Z}*3^ 

"6 9 <ya*2 - g ll3f2 )z4 * ( a l 2 2 " ***Z)U * (2l3r2 " ^ 2 ) a 4 » 

w? - ( y i a 3 - ¥ 3 ) z 4 * U l 2 3 * z l a 3 ) y 4 * ( z # 3 " J l W 

w8 " ^2*3 - * ^ 3 ) s 4 * ( a 2 z 3 " z 2 a 3 ) y 4 * ( 2 ^ 3 " J ^ W 

Consequently 

w5 * ( y 3 z a - * 2 z 3 ) a l + ( y l z 3 * *3*l ) a2 * C^2Z1 * ^ l z 2 ) a 3» 

w6 s ^4 Z 2 - 3 r 2 z 4 ) a l + ( y l z 4 " 3 r42l ) a2 * ^2*1 ' ^ l z 2 ) a 4» 

w7 - (j4z3 - y 3 * 4
) a l + ^ 1 E 4 " y 4 z l ) a 3 * ( 3 r3 r l " Hz3)m4> 

w8 - ( y ^ - y3z4>a2 • ( y 2 z 4 - y 4 z 2 ) « 3 * (y3«2 - y 2 z 3 )a 4 -

F i n a l l y v « (J2Z1 " y l z 2 ) a + ( y l z 3 " ^ 3 z l ) b + (y3*2 " 
- y 2 z 3 ) c + ( y i » 4 - y ^ j M + ( y 4 z 2 - y 2 z 4 ) e + ( y 4 z 3 -

- y j 2 4 ) h € B . 

5. 

5«1« Proposition. Biere is no subciirectly irreducible 

distributive Steiner quasigroup G such that o(G) s 5 and 0 

is nilpotent of class at most 2. 

Proof* Suppose, on the contrary that such a quasi­

group G exists. % 4.1 (i), there is a congruence r of T(5) 

such that Q is isomorphic to T(5)/r and we can assume that 

G » T(5)/r. First, we are going to show that rsq^^y For, 

let g be the natural homomorphism of T(5) onto G. There is 

a congruence a of T(5) with rSs and s/r = pQ. But o(G) = 

= 5 « o(G/p) (applry 1.1 (v),(vii)). According to 1.2, 

4 
1 G/p 1*3 a 81 . Consequent^ |T(5) /s 1 * 81 . Since G/p i s 

medial, PT(5)S s . However l T ( 5 ) / p t « 81 by the satte argu-
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ment and we see that s » Pf(5)# finally, since T(5) i« ni1* 

potent of class at most 2f Pf(5)
fe%{5)« Thus ̂ -,£o*f(5)• Now» 

with respect to 4.2, every block of q^ contains at least 4 

elements, a contradiction with 1.4. 

^•2. lemark. If U n , n#3 f 5t then, by C3, Sats 5.12J, 

there exists a subdirectly irreducible Steiner quaaigroup 

G such that G is distributive, nilpotent of class at most 2 

and ©(G) = n. It is clear that tQt a 3n
f provided 4*nf and 

I G I » 3n""a- for n » lf2. For n * 3f5 such a quasigroup does 

not exist as it follows from 1.2 and 5.1. 

5*3. Theorem, (i) If G is a finite distributive Stei- , 

tier quasigroup then |GI « %n for some 0-fen» 

(ii) T(2) is up to isomorphism the on]|y distributive Stei-

ner quasigroup of order 3 a 3. 
2 

(iii) T(2) is up to isomorphism the oi% distributive Stei-
2 

ner quasigroup of order 3 = 9« 

(iv) T(2)3 is up to isomorphism the only distributive Stei­

ner quasigroup of order 3 = 27. 

(v) T ( 2 K and T(4) are up to isomorphism the only distri­

butive Steiner quasigroups of order 3 s 81• 

(vi) T(2K and T(2)xT(4) are up to isomorphism the only 

distributive Sterner quasigroups of order 3 s 243• 

Proof, (i) See 1.1 (v). 

(ii),(iii) and (iv). These assertions follow from 1.1 (vi) 

and 1.2. 

(v) Let G be a distributive Steiner quasigroup of order 

81. With regard to 1.2, we can assume that G is not medial. 

Then tG/p I £ 27f and so o(G)£ 4. % 1.5, G is nilpotent of 
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class at most 2f and therefore G is a homomorphic taage of 

T(4) (use 4.1 (i)). However, both G and T(4) have the same 

lumber of elements, and consequently G is isomorphic to T(4)f 

(•i) Let G be a distributive Steiner quasigroup of order 

243. We can assume that G is not medial. If o(G).6 4 then G 

is a homomorphic image of T(4), and so IG I £s Slf a contra­

diction. Hence o(G) « o(G/p)>5. According to 1.2, tG/p|>.81. 

Since I G I « 243, lG/pl * 81 and every block of p G contains 

just 3 elements. By 1.1 (v) and 1.2, o(G) » o(G/p) » 5. On 

the other hand, every block of pQ is isomorphic to T(2) and 

we see that p« is a minimal congruence of G. It follows from 

1.3 (iii) that p^ is contained in q^. Consequently, G is nil-

potent of class at most 2. If p« = q« then G is subdireetly 

irreducible by 1.4, a contradiction with 5.1. Hence P Q 4 » % 

and there are a,be G such that a qu b and <a,b> ̂  p^. Put 

A * 4a,b,ab| . Then A is a subgroupoid of G and A is contai­

ned in a block of q^. In view of 1.3 (ii), A is a block of 

m congruence r of G. Clearly, r is a minimal congruence of 

G and r is not contained in pQ. % 1.1 (iv), there is a ma­

ximal congruence s of G such that r is not contained in s. 

Due to the minimality of r, rr&s = d^ and G is isomorphic to 

a subgroupoid of the cartesian product G/rx G/s. Since every 

block of r contains exactly 3 elements, t G/r I « 81. Further, 

PQB" »t G/a is medial and G/s is isomorphic to T(2), since s 

is maxajial (apply 1.2). la particular, t G/s t « 3 and I G/r x 

H G / S I S 243 * I Gl . Thus G is isomorphic to G/rx.T(2). Fi­

nally, since G is not medial, G/r is not medial and G/r is 

isomorphic to T(4) by (v). 
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5«4. Remark. As it is proved in £33, there exists m 

subdireetly irreducible distributive Steiner quasigroup of 

order 3 s 729. Hence there are at least 3 non-isomorphic 

distributive Steiner quasigroups of order 729. 

5*5• 2&2S2&* Combining 5.2 with 5.3f we see that there 

exists a subdirectly irreducible Steiner quasigroup which 

is distributive and has order 3n iff 06n and n#2,3,5. 
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