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DISTRIBUTIVE STEINER QUASIGROUPS OF ORDER 35

Tomé3 KEPKA, Praha

Abstract: All distributive Steiner quasigroups of or-
der 293 are described.

Key words: Distributive, Steiner, quasigroup, order.
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The class of distributive Steiner quasigroups is inte-
resting from the algebraic as well as combinatorial point
of view, It plays a prominent r8le in the structure theory
of distributive groupoids, distributive quasigroups, trime-
dial quasigroups, F-quasigroups, etc. Although several rela-
tively deep results concerning distributive Steiner quasi-
groups are known, the systematic treatment is not availab-
le. For example, the complete description of finite distri-
butive Steiner quasigroups (these have necessarily 37 ele-
ments) is known only up to 34 elements. It is the purpose
of the present note to describe distributive Steiner quasi-
groups of order 35. In particular, an answer to a question

formulated in [3 , p. 441 is given.

1. A groupoid G is said to be

- commutative if it satisfies the identity xy = yx,
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- distributive if it satisfies the identities X.y2 = Xy.X2z
and yz.x = yx.zx,

- idempotent if it satisfies the identity x = xx,

- medial if it satisfies the identity xy.uv = xu.yv,

- symmetric if it satisfies the identities x = y.yx and x =
= Xy.y.

Obviously, every symmetric groupoid is a commutative
quasigroup, every symmetric distributive groupoid is idem~
potent and every medial idempotent groupoid is distributive.
The symmetric idempotent groupoids sre called sometimes Stei-
ner quasigroups (due to the obvious equivalence between the-~
se groupoids and Steiner triple systems). Thus the distri-
butive Steiner quasigroups are just groupoids satisfying
the identitites xy = yx, x = y.yx and X.yz = Xy.X2.

let G be a groupoid. We demote by Pg the least eongru-
ence of G such that the corresponding factor is medial. Fur-
ther, if M is a non-empty subset of G, then [M] is the sub-
groupoid generated by M. Finally, o(G) is the least cardi-
nal number with o(G) = IM| for a non-empty generator set
M of G.

1.1. Proposition. Let G be a distributive Steiner qua-
sigroup.
(i) If a,b,c,d,8 G and ab.cd = ac.bd then the subgroupoid
[a,b,c,d] is medial.
(ii) For all a,b,c, e G, the subgroupoid [a,b,c] is medial.
(iii) If o(G)4£ 3 then G is medial.

(iv) Pg is just the intersection of all maximal congruen-

ce of G,
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(v) If G is finite then o(G) = o(G/p) and |G| = 3" for so-

me O&n.

(vi) 1G] 2 81, provided G is not medial.

(vii) G is finite, provided it is finitely generated.
Proof. (i) See [1, Theorem 8.6] or [4, § II.5, Thé-

ordme 1] .

(ii) and (iii) These assertions are immediate consequen-

ces of (i).

(iv) See [4, § V.5, Proposition 6] .

(v) See [4, § V.5, Proposition 7, Proposition 3] .

(vi) See (4, § VI.6, Lemme 2] .

(vii) See L4, § V.2, Théordme 21,

In this paper, let Z(3) designate the three-element
field with elements 0,1,2. Put xkxy = -x-y for all x,y& Z(3).
Obviously, Z(3)(%x ) is a distributive Steiner quasigroup
and we shall denote it by T(2) (it is visible that T 2) is

& free Steiner quasigroup of rank 2).

1.2. Proposition. Let G be a medial distributive Stei-
ner quasigroup such that o(G) = n is finite. Then G is iso-
morphic to the cartesian product T(Z)n-‘l.

Proof. The statement is well known and easy.

Let G be a distributive Steiner quasigroup. Define a
relation qg on G as follows: & q b iff the subgroupoid
[ a,b,x,y] is medial for all x,y € G. According to 1.1, aq b

iff ab.xy = ax.by for all x,yeG,

1.3. Proposition. Let G be a distributive Steiner qua-
sigroup.

(i) qg is a congruence of G.
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(ii) If H is a subgroupoid of G such that H is contained
in & block of qgs then H is a block of a congruence of G,
(iii) If G is finite and r is a congruence of G such that
rnqg = dG’ where dG is the diagonal congruence of G, then
r = dg.

Proof. (i) See [4, § IV.4, Proposition 1] or [3, Lem-
ma 2.7]1 .
(ii) See [4, § IV.9, Proposition 31 or [3, Lemma 2.14) .
(iii) See [3, Lemma 4.3] .

1.4. Proposition. let G be a finite non-trivial dis-
tributive Steiner quasigroup. The following conditions are
equivalent:

(i) G is subdirectly irreducible.

(ii) At least one of the blocks of qg contairs exactly 3
elements,

(iii) Every block of qg contains exactly 3 elements.

(iv) Every block of g is a subgroupoid isomorphic to T(2).

Proof. See [3, Satz 4.4] (the proposition is an easy
consequence of 1.2 and 1.3).

A distributive Steiner quasigroup G is said to be nil-

potent of class at most 2 if the factor G/q is medial, i.e.,
PgE 9g- It is visible that the class of distributive Steiner

quasigroups nilpotent of class at most 2 is a groupoid vari-
ety. This variety is determined in the variety of distribu-
tive Steiner quasigroups by the identity ({(xy.uv)z)(w(xu.

Fv)) = ((xy.uvdw) (z(xu.yv)).

1.5. Proposition. Let G be a distributive Steiner qua-
sigroup with o0(G)£ 4., Then G is nilpotent of class at most 2.
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Proof. See [4, § V.3, Théordme 1) or [3, Satz 2.41.

The reader is referred to {11,{3) and (4] for further
results and details concerning distributive (Steiner) qua-

sigroups.

2.

2.1. Lemma. Let F be a field and V = F, Let Wte a
subspace with dim W = 3 of the vector space V. Then there
exists & non-zero element a = (31,92,33,a4) € W such that
the elements <a1,o,o,a4> y £0,85,85,0? ,(a3,34,0,0h
< 0,0,a,l,az) , (aa,o,-a4,0) and (0,a1,0,-a3) belong to W.

Proof. The proof will te divided into three steps.
(i) Suppose that there is ce€ F such that x, = ¢x,, when-
ever (x,l,xz,x3,x4) e W. Let A be the set of all {y,,¥p,
y3,y4) from V with Yy = c¥y. Clearly, A is a subspace of V
and WeA<€V. But A%V and dim ¥ = 3, Hence A = W and we can
put & =¢0,0,1,e? .

(ii) Suppose that there is deF such that x, = dx,, when-
ever ¢ xi,xz,x3,x4_) € W, Similarly as in (i), we can put

a =<¢0,0,d,1Y.

(iii) Suppose that neither (i) nor (ii) may be applied.
Define a mapping £ of W into B = F° by £({ xa,xz,xJ,x4) ) =
= {%,,x,) . Clearly, f is & homomorphism and, taking into
account the hypothesis, it is easy to see that dim £(W) = 2.
Hence f(W) = B and there are two elements u,ve W such that
u =<’.l,0,u3,u47 and v = (0,'1,v3,v‘7 . Since u,v are inde-
pendent, there is z =<{z,,2;,23,24) € W such that {u,v,z ¢

is a basis of W. We can assume that z, = 0= 2,. Now, we
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must distinguish the following two cases:

(iii 1) Let z3 = 0. Then z,4 0 and we can assume that z, =
=1amdu, =0 =v,. Put & = (0,’1,v3,-u3) . Then the ele-
ments < a,,0,0,a,> = <0,0,0,-u3} = -uyz, <0,a,,a3,0% =
=¢0,1,v3,0% = v, <n3,u4,o,0 = <v3,-u3,0,0) = v3u-uyv,
{0,0,ay,8,> =<0,0,0,1) = z, {a,,0,-8,,0% = (‘1,0,\13,07 =

= u and (0,&1,0,-03) = (0,0,0,~v3) = -v3z belong to W.

(iii 2) Let Z3% 0. We can assume that z; =1 and Uy = 0=
= v3. Put @ =<{1,z,,~v,,u, ) . Then the elements {8q,0,0,8,> =
= (1,0,0,\14) =u, (0,:2,13,0) = (0,24,-v4,0) = 2,V-V,2,
{a3,8,,0,0% = (-v4,u,,0,0% = =v utu,v, 0,0,ay,8,7 =
={0,0,1,2,) = z, <12,0,-a‘,0) =<24,0,~u,,0)> = gz u~u,z nd
{0,8,,0,-a3) = (0,1,O,v4> = v belong to W.

3. Throughout this paragraph, let G(+) be an abelian
group such that 3x = O for every x€ G and F be a trilinear
mapping of G(+) (i.e., F is a ternary operation on @ such
that G(+,F) is a ternary ring). Consider the following con=-
ditions:

(1) F(x ,x,y) = O for all x,y €0,

(2) F(x,F(x,y,x-y),x-y) = O for all x,ye€ G.

(3) F(x,y-?(x,y,x-}"),F(x,y,x—y)) = 0 for all x,y€ G.

(4) F(x,y,x-y) + F(y,x,x-y) = O for all x,yeG.

(5) F(x,y,z) + F(y,x,z) = O for all x,y,z€0.

(6) F(F(x,y,x~-y),z,u) = 0 = F(z,u,F(x,y,x~-y)) for all x,y,
z,u€eq,

(7) F(F(x,y,z),u,v)= 0 = F(u,v,F(x,y,z)) for all x,y,z,u,

veG,
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Further, we shall define a new binary operation ¥ on

Gby x y = -x -y + F(x,y,x~y) for all x,ye G,

3.1, Proposition. (i) G(%) is a Steiner quasigroup,
provided the conditions (1),(2),(3),(4) are satisfied.
(i1) G(%x ) is a distributive Steiner quasigroup, provided
the conditioms (5),(6) are satisfied.

Proof . Easy.

Put K(x,y,z) = F(x,y,z) + F(y,z,x) + F(z,x,y) for all
x,y,26G. It is visible that K is a trilinear mapping of
G(+).

3.2. Lemma. Let the conditions (5),(6) be satisfied.
Then:

(1) For all x,y,u,v ¢ G, ((xxy)% (ukv)) - ((xxu) %
% (y%xv)) = K(x,y,u-v) + K(u,v,x-y).
(ii) For a,b€G, a qqg(,) b iff K(a-b,x,y) = O for all x,

YeG.
(iii) Qg(x) i8 @ congruence of both G(% ) and G(+); the
corresponding subgroup is equal to § xe G| K(x,y,z) = O for
all y,z€G§.

Proof. Easy.

3.3. Proposition, Let the conditions (5) and (7) be
satisfied. Then G(% ) is a distributive Steiner quasigroup
nilpotent of class at most 2.

Proof. Use 3.1 and 3.2.

3.4, Lemma. Let H(+) be a subgroup of G(+) such that

F(a,x,y), F(x,a,y), F(x,y,a)€eH for all aeH and x,yeG.
Define a relation r on G by x r y iff x-yeH. Thenr is a

congruence of both G(% ) and G(+).
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Proof. Evident.

4, Let 4£n be a natural number and m = n - 1 + (n—’l>.
3

Denote by M the set of all ordered triples ( j,k,l?> such
that 1< j< k< 1€n-1. Then there exists just one bijective
mapping £ of the set § n,n*1,...,m} onto M such that if n £
ti<i’ém, £(i) =<{j,k,17> and £(i") = {j’,x",1°) then ei-
, 1<1°, Put

.

ther j<j’  or j=4", k<k" or j=3°, k=X
G = 2(3)™ and define a trilinear mapping F of the group

G(+) as follows: Let & =<a,,..0,a,7 , b =<b’1""’bm7 s C =
={cyyeeaye Y €0, If nkifmam £(i) = {j,k,1Y then the
i-th component of F(a,b,c) is equal to (‘jbk - bjak)el; if
14£i<n then the i-th component of F(a,b,c) is equal to O,
It is visible that F satisfies the conditions (5) and (7).
Now, consider the groupoid G(x ) defined by xXky = -x -y +
+ F(x,y,x-y). By 3.3, G(x) is a distributive Stéiner quasi-
group nilpotent of clasa at most 2. In the following, we
shall use the notation T(n) for G(% ).

4.1, Propositiom. (i) T(n) is a free distributive
Steiner quasigroup nilpotent of class at most 2 of rank n,
(ii) If @ =<ap,e.0,8 2, b =(b,l,...,bm> € T(n) then a g b
iff 8, = Dpyece,8y p = b .

Proof. Apply [3, 5.4 - 5.8 and 3.2 (ii) (see also
[2, Theorem 9Al).

4.2, Propositiom. Let n = 5 and rgqg(x) be & congru-
ence of G(%) = T(5). Then every block of dg(x)/r contains
at least four elements.

Proof. We have m = 8 and £(5) =(1,2,3), £(6) =
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=(1,2,4) , £(7) ={1,3,4>, £(8) =(2,3,4) . Put A =
={<oy,e0,0g7€G | & =a,=a;=a,=0}andB ={ac
€eGlaro03}. By 4,12 (ii), A is the block of Qg (%) contain-
ing the element O. Since r&qg(,), BEA. Moreover, A(+) is
a subspace of the vector space G(+) over Z(3) and dim A(+) =
= 4, On the other hand, F(a,x,y) = F(x,a,y) = F(x,y,8) =0
for all ae A, X,ye€ G and it is easy to see that B(+) is a
subspace of G(+), too. It follows from 3.4 that x r y iff
x-y € B, Denote by g the natural homomorphism of G(>%k ) onto
G(% )/r = H(3% )., Obviously, g(A) is contained in a bloek of
Qg (k) @nd hence the assertion is clear in case dim B(+) &2,
Further, if dim B(+) = 4, then B = A, r = qq4(,) and H(%)
is medial, since G(% ) is nilpotent of class at most 2. How-
ever, | H| = 81 and W (g) = H(% )= H(% ). Thus we can assume
in the rest of the proof that dim B(+) = 3. In that case,
g(A) contains exactly 3 elements. By 2.1, there exists a non-
zero element <°v°’0’ov‘11°2"3»°47 € B such that the ele-
ments a = <o,o,o,o,a3,a‘,o,o),b = <o,o,o,o,a2,o,-a4,o), e =
=(0,0,0,0,8,,0,0,a,% , & =£0,0,0,0,0,8,,85,07, e =
=(0,O,O,O,O,a,l,0,—a3) » h =<0,0,0,0,0,0,a,,8,7 belong to
B, Put x =<a1,32,a3,a4,0,0,0,0 Y. Then x&A and it suffices
to show that g(x) Ui (x) g(0). We must prove that (0% x) %
¥(yxz) r (Oxy)x(xkz), i.e., ((OXxx)% (y%2)) -

- ((Oxy)% (x%xz))e B for all y,zeG. However, ({Ox%x) x

* (y*x2)) - ((Oky)k (x%z)) = F(z,y,x) + F(x,z,y) + F(y,x,z)
by 3.2 (). Let y ={yj,0-4,¥g”, 2 =£2Zp,000,2g7 and w =
=(w1,...,w87 = F(x,y,x) + F(x,z,y) + F(y,x,z). We have wy =

=w2=w3=w4=Oand
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812023 * (813 - 238}y + (249 = ¥y25)a3,

Y5 = (yy8,

+

‘11’2)’4 (ay2, = z,lnz)y4 + (25, - yizz)au

(8923 ~ z,83)y, + (2473 = ¥423)8y,

6 = (19,

+

w7 = (yya4 - 81732, .
wg = (ypay - #293)%4 ¥ (8273 = 25830y, + (293 - ypu3)a,.
Consequently

vs = (y3z, - y223)ey *+ (¥423 - y329)8; + (7,21 - ¥42;)e;,

we = (y4zp - V22408 * a2y - 342908, + (7271 - YaZplay,
'7 = (y4z3 - y324)‘1 + (y124 - y421)‘3 + (332‘1 - 3123)l4,
wg = (y,24 - ¥324)82 + (7224 - ¥ 25083 + (y32; - ¥p23)a,.
Finally, w = (¥p2%4 = ¥y2p)a + (y,lz3 - y3z,l)b + (y3z2 -

- ¥p23)c + (3924 - y4z1)d + (y422 - y224)e + (y4z3 -

- y324)h‘ B.

5.

5.1. Proposition. There is no subdirectly irreducible
distributive Steiner quasigroup G such that o(G) = 5 and G
is nilpotent of class at most 2,

Proof. Suppose, on the contrary, that such a quasi-
group G exists. By 4.1 (i), there is a congruence r of T(5)
such that G is isomorphic to T(5)/r and we can assume that
G = T(5)/r. First, we are going to show that r€qgp(g) For,
let g be the natural homomorphism of T(5) onto G. There is
a congruence 8 of T(5) with r€s and s/r = py. But o(G) =
= 5 = 0(G/p) (apply 1.1 (v),(vii)). According to 1.2,

16/p V= 3* = 81, Consequently 17(5)/8 | = 81, Since G/p is
medzal, Pp(5)S s. However 1T(5)/pl= 81 by the same argu-
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ment and we see that s = pp(5)+ Finally, gince 7T(5) is nil-
potent of class at most 2, Pr(s)ﬁ qT(S)‘ Thus rEqq(s5)° Now,
with respect to 4.2, every block of qy contains at least 4

elements, a contradiction with 1.4.

5.2, Remark. If 1&n, n43, 5, then, by (3, Satz 5.12],

there exists a subdirectly irreducible Steiner quasigroup
G such that G is distributive, nilpotent of class at most 2
and o(G) = n. It is clear that 1G| = Jn, provided 44n, and
IG)=3"2 for n=1,2. For n = 3,5 such a quasigroup does
not exist as it follows from 1.2 and 5.1.

5.3. Theorem. (i) If G is a finite distributive Stei- .
ner quasigroup then |G| = 3® for some O£n.
(ii) T(2) is up to isomorphism the only distributive Stei-
ner quasigroup of order 3'l = 3.
(111) T1(2)? is up to isomorphism the only distributive Stei-
ner quasigroup of order 32 =9,
(iv) T(2)3 is up to isomorphism the only distribv;xtive Stei-
ner quasigroup of order 33 = 27.
(v) T(2)* md T(4) are up to isomorphism the only distri-
butive Steiner quasigroups of order 3‘ = 81.
(vi) T(2)5 and T(2)x T(4) are up to isomorphism the only
distributive Steiner quasigroups of order 35 = 243,

Proaf. (i) See 1.1 (v).
(ii),(iii) and (iv). These assertions follow from 1.1 (vi)
and 1.2,
(v) Let G be a distributive Steiner quasigroup of order
8, With regard to 1.2, we can assume that G is not medial.

Then 1G/p | £ 27, and so o(G)& 4, By 1.5, G is nilpotent of
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class at most 2, and therefore G is a homomorphic image of
T(4) (use 4.1 (i)). However, both G &and T(4) have the same
mumber of elements, and consequently G is isomorphic to T(4),
(vi) Let G be a distributive Steiner quasigroup of order
243. We can assume that G is not medial. If o(G)% 4 then G
is a homomorphic image of T(4), and so 1G| £ 81, a contra-
diction. Hence o(G) = o(G/p)Z 5. According to 1.2, 1G/piz81.
Since | G| = 243, I1G/p| = 81 and every block of py contains
just 3 elements. By 1.1 (v) and 1.2, 0(G) = o(G/p) = 5. On
the other hand, every block of pg is isomorphic to T(2) and
we see that pg, is a minimal congruence of G. It follows from
1.3 (iii) that p, is contained in q;. Consequently, G is nil-
potent of class at most 2, If Pg = 9g then G is subdirectly
irreducible by 1.4, a contradiction with 5.1, Hence Pe# g
and there are a,b¢ G such that a Qg b and (a,b> ¢ Pg. Put
A ={a,b,ab} . Then A is a subgroupoid of G and A is contai-
ned in a block of qg. In view of 1.3 (ii), A is & block of

& congruence r of G. Clearly, r ies a minimal congruence of

G and r is not contained in pg. By 1.1 (iv), there is a ma-
ximal congruence s of G such that r is not contained in s.
Due to the minimality of r, rne = d, and G is isomorphic to
a subgroupoid of the cartesian product G/rx G/s. Since every
block of r contains exactly 3 elements, | G/r | = 81. Further,
PgE 8, G/8 is medial and G/s is isomorphic to T(2), since s
is maximal (apply 1.2). In particular, 1 G/s| = 3 and |G/r x
»G/s| =243 =1 Gl , Thus G is isomorphic to G/rx T(2). Fi=-
nally, since G is not medial, G/r is not medial and G/r is

isomorphic to T(4) by (v).
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5.4, Remark., As it is proved in [3], there exists a
subdirectly irreduecible distributive Steiner quasigroup of
order 36 = T729. Hence there are at least 3 non-isomorphic

distributive Steiner quasigroups of order T29.

5.5. Remark. Combining 5.2 with 5.3, we see that there
exists a subdirectly irreducible Steiner quasigroup which

is distributive and has order 3% iff O4n and n#2,3,5.
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