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A SOMEWHAT SURPRISING SUBSPACE OF 3N - N

Petr SIMON, Praha

Abstract: The purpose of this short note is to show
that er some assumption on set theory there exists a li-
nearly ordered topological space which can be densely em-
bedded into (3N - N,
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Denote, as usual, by N¥* the space of all uniform ul-
trafilters on the countable discrete set, i.e. N¥ = AN -

- N, the remainder of integers to their fech-Stone compae-
tification.

If P is a dense-in-itself topological space, call n(P),
the Novék number of P, the least cardinality of a family of
nowhere dense sets which covers P,

Writing ¢ for the cardinality 2@ , we can state the

main result of the present paper as follows:

Theorem. Suppose n(N#* )> c. Then there exists a line-
arly ordered topological space which can be embedded as a
dense subspace into N¥* .,

The proof of this theorem turns out to be an easy ex-

ercise on a machinery developed in ( BPS]. Let us summarize
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several notions and facts from that paper, which will be
needed further on.

Definition. A family G c Open(N*) is an almost-par-
titiom of N* , if G is pairwise disjoint and UG is den-
se in N* . If G and ¥ are almost-partitions of N¥, then
G refines 3 (G 33 ) if for each G & G there is anH €
¢ & with GCH.

The family © c % (Open(N*)) is called a matrix, if
each member of © is an almost-partition of N¥ .

A matrix © is shattering, if for each non-void open
set Uc N* there is some G € 8 such that U meets at least
two members of G .

A matrix @ is a base-matrix, if the ordering & well-
orders the whole ® and if U® is a or-base for N*,

Given two matrices 8 and &‘, we shall say that 6’
strongly refines 8 (8’<< 0 ) if there is a bijection b:

: @—> 6’ such that b(G )= G for each G ¢ 6 .

If 6 is a matrix, call a family € to be a chain in @,
if € 1is centered, contained in U6 and maximal with res-
pect to those two properties. If [<€| = | | , then the ehain
¢ is called long.

The cardinal number ¢ (N*) is defined as
min { 18] : ® is a shattering matrix in N*3 .

Fact 1. ([BPS], 2.11(c)) For each shatter.ng matrix 6

with 18] = % (N*) there exists a base-matrix 8’ such that
16’1 = se(N*), 8’4—< 8 and U @’ c Clopen(N¥).

Fact 2. ([BPS1, 3.5(iii)) n(N* )>c if amd only if
2 (N*) = ¢ and each shattering matrix 6 , 181 = ¢, con-
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tains a long chain.

Proof of the Theorem. Well-order the family of all

clopen subsets of N* : Clopen(N#*) = (Hs tf<ci. Let
C’,E =-(Hg JN¥ - He; . The matrix 0 = -tcyi: §<ciis
clearly shattering. Assuming n(N*)>c, we have |@) =¢ =
= 2¢(N*) Ly Fact 2, hence according to Fact 1, there is a
base-matrix 8’ with |81 =c, 8’ <26 , U 8’ c Clopen(N¥),

Let us write @’= {‘lrg :§ < c}; we may assume with-
out any loss of generality that U is infinite, Vf < Uy
whenever 7 < § < c and that |{V¥ c‘lfg WecVilzw when-
ever 7 < <¢c,Ve V; -

Using Fact 2, we know that there are long chains in e’
If € is such a chain and if H is a clopen subset of N*,
then by the choice of 8 there is some C & € such that ei-
ther CcH or CcN¥ - H holds. Thus |\ €| = 1. We shall
show that the set

D={xeN€ : € is a long chain in &’}
is the desired subspace.

D is _dense in N*, Let U be a non-void open subset of
N*, Since U@’ is a gr-base for N* , there is some § < ¢
and some non-void V ¢ ‘Vé with Vc U, Consider the family
6 y consisting of all Wy (§ < M < c), where Wy =
=4{We 1/;L :Wc V3. Obvicusly 8y is a shattering matrix
for V, but V being a clopen subset of N* is homeomorphic
to N¥ , hence 8y contains a long chain €y. Let € be a
maximal chain in 8’ such that € > <€ y. Then € is long
and N € ¢ Vc U, We have proved that U meets D, but U was

chosen arbitrarily, thus D is dense in N*,
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D can be linearly ordered. (The basic idea of the fol-
lowing teehnique was first used in [M].,) PFor xeD, denote
by ‘Cx the long chain in 8 with N € ={x} . Before de-
fining en order for D, we shall order each ’I)’g as follows:

Let <, be a linear ordering of ’V’o without the first
or the last element. Proceeding by the transfinite induction,
let § < c and suppose that every ’UZL (n < § ) is ordered
¥ <s in such a manner that if § <7 < § ,V,'e‘lfi v,
7 L
Call two members V,W of ’Ifé to be equivalent if for

We Yy VeV, Wc W and if V <¢ W, then Vi<

each 9 < § there is some U € V"L such that VuWcU, Or-
der every equivalence class E by <g 8uch that (E, ‘E) has
neither the first nor the last element. Having done this, we
may define an order <g by the rule
V<§ W iff either V is equivalent to W and V<g W or there
is some 7 < § and V',W e ¥ such that VcV’, Wc ¥ and
V'<,l .

Finally, for x,ye D define x< y iff for some E < c,
Vxe‘fxn vg , Vye ‘Cyn ‘Ué , Vx<g Vy holds.

It is easy to check that < is a linear ordering of D.

If Jx,y[ is an interval-neighborhood of a point ze€ D,
then there is some § < c such that the sets €, n 'Vé ,
‘Cyn Ve, €,n ‘U}E are distinct. Let Ve‘Czn'Vg . Then
zeVand VADc Ix,y[ .

If U is a neighborhood of a point ze D, then there is
some § < c such that for Ve ¢, A ‘Vf , V is contained in
U, Obviously the family {W e‘l)‘é*_l:'cvg is an equivalence

class in ‘V'g +1 @nd the order < p has not the first and
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the last element. It follows that one can choose three c¢lo-
pen sets W,,W,,W; e i{Ve V§+1:' €V} such that Wy <§+1 v, <t
<§"'1 ¥y and W, € €, N VE +1- Pick two long chains <,
“C3vith'1e‘cln 1f§+1 and I3e‘€3 A Vf*'l' let {x}=
= f\‘Cl, {yi =N €3, Ten z €Ix,y[cVADcUAD.
We have proved that the order-topology of D coincides
with its subspace topology, which completes the proof.

Remarks. (a) The assumption n(N* )>c holds e.g. if
V = L, if CH holds or if MA is true. The situation under
the assumption of MA is somewhat simpler, since then all
chains in 8’ have to be long. By a simple modification of
the given proof (use well-ordering in the induction on eaeh
stage where the linear ordering without the first and last
element was needed) one can show that under MA, N* contains
a densely embedded copy of ®c with the lexicographical or-
der.

(b) Each point of the linearly ordered subset const-
ructed in the proof was a P(c)-point in N*, One can more-
over require it to be selective. This is possible, but it

is necessary to start the proof with a more careful choice
of the matrix 6 .
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