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COMMENTAf ION1S MáTHEMAf ICAS UNIVIBSlf ATIS GAHOLINA1 

19,2 (1978) 

A SCaffilHAf SUMP1ISINC1 SUBSPAC1 Of (l N - N 

Petr SIMON, Praha 

Abstracts The puroose of this short note is to ©hew 
that under some assumption on set theory there exists a li­
nearly ordered topological space which can be densely em­
bedded into 0N - N. 

Key words and phrases: Cech-Stone compactification, 
linearly ordered topological space, base matrix, Novalc num­
ber. / 

AMS: 54P05, 54D35 

Denote, as usual, fcy N* the space of all uniform ul-

trafilters on the countable discrete set, i.e. N* » $N -

- Nf the remainder of integers to their Cech-Stone compac­

tification. 

If P is a dense-in-itself topological space, call n(P)f 

the Novale number of Pf the least cardinality of a family of 

nowhere dense sets which covers P. 

Writing c for the cardinality 2** f we can state the 

main result of the present paper as follows: 

theorem. Suppose n(N* )> c. Then there exists a line­

arly ordered topological space which can be embedded as a 

dense subspace into N*. 

The proof of this theorem turns out to be an easy ex­

ercise on a machinery developed in C BPS3. Let us summarize 
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several notions and facts ftrom that paper, which will be 

needed further on. 

Definition, k family Q,c Open(N*) is an almost-par-

titiom of N* , if €^ is pairwise disjoint and KJCfr* is den­

se in K* . If €%> and 36 are almost-partitions of N * f then 

(̂  refines 3i ( (J, 4 TfL ) if for each & e Q» there is an H € 

6 36 with QcH. 

Hie family 8 c (? (Open(If*)) is called a matrix, if 

each member of © is an almost-partition of N* • 

4 matrix i is shattering, if for each non-void open 

set U c N * there is some (̂  e 8 such that U meets at least 

two members of (#* • 

.4 matrix i is a base-matrix, if the ordering J- well-

orders the whole i and if U i is a ar -base for N* . 

Given two matrices i and i # , we shall say that i' 

strongly refines i (i#-f-f § ) if there is a bisection b: 

i i — y i # such that b(^)-4 §. for each Q* e i » 

If i is a matrix, call a family ? to be i ohain in i, 

if *C is centered, contained in U9 and maximal with res­

pect to those two properties. If 1*6 I * I iI , then the chain 

<£ is called long. 

The cardinal humber n, (H * ) is defined as 

min 4 I i 1 i i is a shattering matrix in N* ? # 

fact 1. (IBFS3, 2.11(c)) For each shattering matrix i 

with lil s fi(N*) there exists a base^matrix &* such that 

li'l • §•(!*), i'-*-« i and U § ' c Clopen(N* ). 

Fact 2. (CSFSl, 3.5(iii)) n(H* )> c if aid only if 

ie(N* ) s c and each shattering matrix i , lil s c, con-
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tains a long chain. 

Proof of the Theorem. Well-order the family of all 

clopen subsets of N* s Clopen (N*) » -CH| S | < e 1 . Let 

<^f «<H| fN*- H|J .The matrix 8 « 4%.- s f-* e } is 

clearly shattering. Assuming n(N*)>ef we have | 8 I
 s c « 

s tt(N*) by Fact 2f hence according to Fact 1, there is a 

base-matrix 8' with 10'| » cf 8' -4-4 § f U 8' c Glopen(N*). 

Let us write &*« 4 1/c s f -«-- c f | we may assume with­

out any loss of generality that VQ is infinite, 1fc «4 V^ 

whenever ^ <\ f < c and that U l i V | sW c ? $ I j. ca when­

ever ^ < | 4 c, ? e 1^ • 

Using Fact 2f we know that there are long chains in § . 

If *£ is such a chain and if H is a clopen subset of R*, 

then by the choice of 8 there is 3ome C# f such that ei­

ther C c H o r C c N * ~ H holds. Thus \ A X I » 1. We shall 

show that the set 

D « 4x e A 4 ^ s *C is a long chain in 8' | 

is the desired subspace. 

® JQ dense in N* . Let U be a non-void open subset of 

N* . Since U 8 # is a sr-base for N* f there is some § < e 

and some non-void ? € 1& with ?c U. Consider the family 

8 v consisting of all 1#^ (| < ^ -< c), where Vtf^ » 

-4Vc1^L sWe? f . Obviously 8 v is a shattering matrix 

for ?f but ? being a clopen subset of N* is homeomorphic 

to N* , hence 8 V contains a long chain *£*.. Let iff be a 

maximal chain in §# such that f a % v. Then *€ is long 

and A *£ c ?cU. We have proved that U meets Df but U was 

chosen arbitrarily, thus D is dense in N* . 
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D can be linearly ordered. (The basic idea of the fol­

lowing technique was first used in I Ml.) For xeD, denote 

by % *k»e \sm& chain in #' with A *fx
 s 4x$ . Before de-

x 

fining an order for Df we shall order each V* as follows: 

Let < be a linear ordering of 1T without the first 

or the la st element. Proceeding by the transf inite induction, 

let | < c and suppose that ererj VL {*i < | ) is ordered 

ty < * in such a manner that if J < ^ < £ ,?fW et| f?
#
f 

W #« 1 ^ f ?'c ?f W
#c W and if ? <f W, then ? ' ^ W

#. 

Call two members ?fW of 1& to be equivalent if for 

each i|< C there is some % € VL such that ?uWcU. Or­

der every equivalence class 1 by < s such that (Ef < s) has 

neither the first nor the tost element. Having done this, we 

may define an order <c by the rule 

? <l W iff either ? is equivalent to W and ? < B W or there 

is some % < *% «nd ?#
fW

#e V such that ?c? #, fcf' and 

V ' ^ *'. 

Finally, for xfye»D define x< y iff for some | < cf 

v x * * x ^ f . V y e * y A rf • V x < f Vy holds. 

It is easy to check that < is a linear ordering of B. 

If 2 xfy £ is an interval-neighborhood of a point zc Bf 

then there is some £ < c such that the sets *£ A 1£ f 

*Cy A 1& t ^z
 A ^f are distinct. Let ? € *€g A 1£ . Then 

z c ? and V n D c 3 x,y £ . 

If U is a neighborhood of a point ze Df then there is 

some C < c such that for ? e <g A t£ , ? is contained in 

U. Obviously the family {W €t£+«t2Wc?§ is an equivalence 

class in ^g+i an^ *ne o**der < « has not the first and 
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the last element. It follows that one can choose three elo-

pen sets V-^WgtV^e {Wi V^+^sVcff such that V-̂  ̂ c+x ^z^Ul 

^c+x % mn^ % € *̂ 2 A ^f +1* p^ck two lon€ chains *£-,, 

^ 3 with V^ e ^ A tfu + 1 and V3 e €3 n 1L + 1 , let 4 x J s 

« ^ < l f ill a ^ ^ 3 * a «» ii3x,yCcVoDcUrtH. 

We have proved that the order-topology of D coincides 

with its subspace topology, which completes the proof. 

Remarks. (a) The assumption n(N* )>c holds e.g* if 

V * L, if OH holds or if M& is true. Hie situation under* 

the assumption of Mi is somewhat simpler, since then all 

chains in §' have to be long. By a simple modification of 

the given proof (use well-ordering in the induction on eaeh 

stage where the linear ordering without the first and last 

element was needed) one can show that under MA., N* contains 

a densely embedded copy of ec with the lexicographical or­

der. 

(b) lach point of the linearly ordered subset const­

ructed in the proof was a f (e)-point in N* . C*ie can more­

over require it to be selective. This is possiblef but it 

is necessary to start the proof with a more careful choice 

of the matrix § . 
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