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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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ON AMALGAMATION OF GRAPHS AND ESSENTIAL SETS OF GENERATORS
Svatopluk POLJAK, Daniel TURZIK, Praha

Abstract: The amalgamation of graphs from complete
graphs is investigated. Some classes of graphs for which
this operation is unambiguous are shown.
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Introduction. Given two graphs 61,02 with a common
(induced) subgraph H we construct the graph (G,,H,G,) by
emalgamation of 01,02 with respect to H. Recently it was
shown that this graph-theoretical operation plays an impor-
tant role in constructions of "difficult graphs® (such as
Ramsey graphs ef various types), examples of this are gi-
ven in [ NR]. This paper is devoted to the study of proper-
ties of this operation itself,

It is easy to see that every (finite) graph may be ob-
tained by a gradual amalgamation of complete graphs. The
basic question we are interested in is whether this proce-
dure is unique. The main result (stated below as Theorem
3) is that every graph which can bte constructed from com-
plete graphs of at most 3 different cardinalities is uni-
quely constructable. This is the best possible as there

exists a graph which can be constructed by means of comple-
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te graphs of 4 different cardinalities in entirely 2 dif-
ferent ways.

These results solve a question of L. Kufera and J.
NeSettil,

§ 1. Notiems amd results. Let G, = (V,,F,), G, =
= (Vz,lz) be proper subgraphs of graph G = (V,E). (The
term subgraph is used in the semse of [B), i.e. H is a sudb-
graph G if V(H)c V(@) and B(H) = B(®) A [V(D)12,) 1r v, 0
UV, = Vand BUR, = B then the triad (G,,H,0,) where H =
= (V)0 V,,E;n By) is called the amalgam decomposition ef
G.

Example: If G = G, + G, theam the triad (G,,6,0;) is
the amalgam decomposition of G.

If A is the subset of integers N =40,1,...} L(A)
will denote the smallest class of graphs satisfying the fol-
lowing twe conditions:

1. K,€ L(A) for every neA. (K, is the complete graph
with n vertices.)

2, If there is an amalgam decomposition (G,,H,G,) ef
the graph G for which G,,H,G, € L(A) then Ge L(A), too.

If Ge L(A) then we can say that A generates the graph
G. Graph G is called k-generated if there is some set A the
cardinality of A equals k which generates G.

The integer a is called an es/a:ntial generator of the
graph G if a€ A for every A so that Ge I{(A).

Graph is called unambiguous if @ is generated by the

set of its essential generators.
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Remark: Several naturally arisimg classes of graphs
are of the feorm L(A) fer a convenient set A. For example
L(1,2) is the class of all trees, L(0,1,2) is the class eof
all graphs witheut triangles, L(N) is the class ef all
graphs.

The follewing definitions describe some types of es-
sential generators. Three kinds of comple te subgraphs are
defimed and their cardinalities are shown to be essential
generators (Theorem 1), Theorem 2 .provea that triangulat-
ed graphs are unambigucus. The unambiguity ef 3-generated
graphs results frem Theorems 1,2. Simultaneously an examp-
le of ambiguous 4-generated graph is presented.

Denote by K(G) the set of all complete subgraphs of
the graph G. K(G) always contains the empty graph (demoted
by Ko) and ome point graphs corresponding to the vertices
of the graph G. Tha term cycle will apply to every simple
cycle of the length ef at least 4 without chords (see [B],
chord of the path will be understood in the same sense).
Every simple path without chords will be called the path.

Definition: 1. Complete subgraph Ke K(G) is called
the clique if K is the maximal complete subgraph, i.e.
there is ne L¢K(G), LZK.
2, Complete subgraph Ke K(G) is called a segment if the
equivalence BG(K) on the set {M¢ K(G) :llit} has at least
two classes, The equivalence IG(K) is generated by the re-~
lation ~/ defined as follows: M~ N iff Mn NZK. (Bquiva-
lently K¢ K(G) is a segment if the set {Me K(G):MZK3} can

be divided into two non-empty subsets X,Y so that for eve-
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ry pair ef complete subgraphs Me X, NeY is MA N = K.)

3, Comple te graph is called the focus if there is some
eycle C in G (disjoint with K) that K@ C is a subgraph

of G and K is maximal with this property, i.e. for L €

e K(G), LZK there is ne cyele C’ so that L@ C’ is a sub-
graph of G, Here K@ C denetes the graph which can be ob-
tained by the disjoint union of K, C and by adding all
edges {u,v} where ueV(K), veV(C).

§ 2. Proofs

Theorem 1: If the complete graph K is a clique, seg-
ment er focus of the greph G them | K| is an essential
generator of G.

Proof: Theorem 1 is valid if G is a complete graph.
If G is not complete let us denote (G,,H,3,) an amalgam
decomposition of the graeph G. We n're going to prove that
every complete subgraph which is clique, segment or focus
in the graph G is clique, segment or focus in one of the
graphs 01,5,02. Hence each of the three described kinds
of generators must be the generator of G1 or H or 02. Thus
the theorem will be proved. Obviously if M is a comple te
subgraph of G then M is the complete subgraph of Gl or 02.

The proof of this theorem follows from three propo-
sitions below:

Proposition 1: If K is clique of the graph G then K
is clique of the graph Gl or Gy.

The proof is obvious.

Proposition 2: If K is the segment of the graph G,
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then K is the segment of Gl or 02 or K is the clique of H.
Proof: Let us denote by Rl,...,Rt the classes of
equivalence E(K) for the segment K of the graph G. Two ca-

ses must be considered.

a) There is Gi and two classes Rj and B of equiva-
lence E(K) so that RJ“ K(Gy)4 @ and R NK(Gy)4 #. Then by
definition K is the segment of Oi.

b) If the case a) is not valid, then t = 2 and in eca-
se of suitable indexing R N K(Gl) = BNK(Gy) = @. In this
ecase K is the elique of H,

Proposition 3: If K is the foeus of the graph G then
K is a foeus of Gl or 62 or K is a segment of H.

The following lemma will preeede the proof of Proposi~-
tion 3.

lemma: Let U = (&,uy,0..,uy,b), ¥ = (a,v),¢.0,v,,b)
m,nx 1 are two disjoint (except a,b) paths of the graph G.

Then u, is either adjacent to all v J ® 1,eeeyn or the

L
cycle of the graph G can be ehosen from the union of the
vertiees of both paths.

Proof of Lemma: Let u; be not adjacent to all vertices

Vi 184 (a,ul,...,um,b, vn,...,vl.,a) is not a eyele put

i, = min §i: there is j that uy,vj are adjacent in @ %
ip = min(j:uio,vj are adjacent in GJ}.Then
("ul"“’“io'v.jo""’vl") is the cycle in G.

Proof of Proposition 3: Let K be the focus of the
graph G. Suppose that K is reither focus of Gl nor Gz nor
segment of H., As K is neither focus of Gl nor 02 every cyc-
le with the focus K contains as vertices of Gl - H as ver-

tices of G, - H. Let us take the cycle C with the focus K
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which contains the smallest number of vertices of G, - H.
Denote by a,b two vertices o the cycle C for which the
arc between a and b belongs to the graph Gl - Hand a,b e
V(H). Denote this arc ¥ = (a,vy,...,Vp,b), mZ1, The re-
maining part of the cycle C denote by W = (a,wl,...,wp,b).
pZ1. As K is not segment of the graph H the equivalence
E;(K) has only one class and complete graphs K v a3, Kv
vib3 are equivalent. Thus there is @ sequence Kudfa} =
=M M ,...,M, = KUib} s0 that M;n M; R K for all i =
= 0,000yt - 1, M;€ K(H). Hence there is the shortest path
T = (a,uy,000,u,b), nZ1 so that Kuiu;3 e K(H) for all
i=1,...,n.

If a cycle C’ can be chosen from the union of the paths
T, ¥ then this cycle C’ belongs to the graph G, and C'® K
is a subgraph of G,. Thus K is the focus of G,, which is a
contradiction. Hence by the lemma the vertex vy is adjacent
to all vertices uy and because the cycle C possesses no chord
the paths U and v are disjoint (except a,b). Consider two
cases.

i) nZ2. If it is possible to choose a cycle C’ from
the union of the paths U,w then C’® K is the subgraph G and
the cycle C’ contains a smaller number of vertices of G, - H
than the cycle C. Thus by the lemma the vertex v is adja-
cent to all vertices u;. But then C1 = (a,vl,uz,wl,n) is the
cycle of G and C; @ (K uiull ) is the subgraph of G. This is
the contradiction with the definition of the focus K.

ii) n = 1. After the lemma the vertex u, is adjacent
to all vertices ViWso i=1l,00eyn, §J =1,ee4,pP. Thus

C® (Kuifu;} ) is the subgraph of G, which is a contradiction.
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The graph possessing no cycle (cycle without chord of
the length at least 4) is called triangulated.

Theorem 2: Every triangulated graph is generated by
the set §1K| :K is clique or segment of G}.

First, we prove the following:

Proposition: BEvery minimal articulation set of the
triangulated graph G is its segment.

(This is a strenghtening of a known fact that every mi-
nimal articulation set of the triangulated graph is a comple-
te graph - see [B].)

Proof of the proposition: Let us denote co,...,cq, q&
£ 1 the connected component of the graph G - A where A is a
minimal articulation set of the graph G. If G is non-connec-
ted then A is the empty set and evidently the segment. If G
is connected then A% 0 and by the proof of the theorem in
[B] : For every a€ A and for every i = 0,...,q the vertex a
is adjacent to some vertex in the component C;+ We shall show
that in every component ci there is a vertex uy adjacent to
all vertices a€A.

Denote u a vertex of Ci adjacent to the greatest num-
ber of the vertices of A. Suppose that there is ae€ A that
{a,ul is not an edge in G. By the above there is a vertex
veci, v adjacent to a. Let us take such v with the minimal
distance k from u in the component Ci. By the choice of the
vertex v there is the path P of the length k which joins ver-
tices u and v in the component Ci. The vertex v cannot be ad-
Jjacent to all vertices of A which are adjacent to u. Thus
there is be A that {u,b} is an edge and §{b,v} is not an ed-
ge in the graph G. By the application of the lemma from Theo-

- 365 -



rem 1 to the paths (a,b,u) and (a,§) and by using the faet
that £§b,vj is not an edge we can prove the existence of
the eyele in the graph G, which is a contradiction since G
is triangulated. Thus the vertex u is adjacent to all ver-
tiees of the artieulation set A. Evidently the comple te
graphs {uil VA, {uj?p v A, i j are not equivalent in E(A).
Thus A is the segment of G.

Proof of Theorem 2: The theorem is obvious for comp-

lete graph. To finish the proof of the theorem it is suffi-

. 9.
eient to take the amalgam deeomposition (C,u A,A,Au L) Cy).
It is easy to see that all cliques and all segmehts of de-
composition graphs are eliques and segments of the graph

G. Thus Theorem 2 is proved.

Corollary: Trisngulated graphs are unambiguous.,

Proof: By Theorem 1 cardinalities of the cliques and
segments are essential generators. By Theorem 2 these gene-
rators are sufficient. Thus triangulated graphs are unsmbi-

guous.

Another example of unambiguous graphs are comple te k-
partite graphs. If G is complementary graph to the equivn-
lence, all classes of which have at least two elements,
then all cardinalities of complete subgraphs of G are es-

sential generators of G.

The following theorem proves the unambiguity of 3-ge-
nerated graphs.

Theorem 3: Every 3-generated graph is unambiguous.
There exists a 4-generated graph which is ambiguous.

Proof: Let G be a 3-generated graph w?th the genera-

- 366 -



tors a,b,c, a<b<c, If G is triangulated then G is unam-
biguous by Theorem 2. If G is not triangulated then thére
is a eyele in G and thus G possesses some focus F. This
foeus is contained in some segment P, PEF and P is again
contained in some clique K, KZP, Thus |Fl = a, |P| = b,
|K| = ¢c. This proves that a,b,c are essential generators
and thus the graph G is unambiguous.

The example of the 4-generated graph which is ambigu-
ous is given in Figure 1.

Fig.1:
¢, dyy
Q-‘ J/ 4
o cby
Q
y
doz ”3
C,
3 oy
@, %,
S oy

Denote G, subgraph of G on the set «(nl,aa,aya‘,b‘,c“d‘}

a, " " -ial,az,lybl,...,b‘,
cl,dl,ez,dz,c3,d3‘}

G4 " " {al,...,a4}

G, " " {a,,b,0,,4,3
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Denote Gg subgraph of G on the set {al,aa,a3,b2,b3,b‘,c2,
dz,c3,d3}
Gg - " {al,bl,...,b4,cl,d1}
Then @ = (G,,G,n G,,G,), G; = (63,6310 G,,6,), Gy = (Gg,G5n
NGg,G¢). Bvidently 63'04’05’66’01"‘ (}2,03n 04,(}5n Gg €
€ L(0,1,3,4).
Thus Ge L(0,1,3,4).

Denote H, subgraph of G on the set -(al,...,a4,b3,b4,c3,c4,
d3,44%
H, " » 5 8),85,b1,000,b,,69,¢5,
41,95}
Then G = (Hl,Hln Hy,Hy), evidently H,,H,,H,n Hye L(0,1,2,4).
Thus Ge€ L(0,1,2,4).

Now we prove that G &L(0,1,4). Let G = (G,,H,G,) be an
amalgam decomposition of G that 411,...,0‘} € V(G;), §by,.ee
...,b4}c V(G,). If there is only one index i that a&;€ V(G,)
then {bj:j#ii c V(Gl) and thus G, contains the clique of
the cardinality 3 .

If there are just two indexes i,j that ‘i"j" V(Gz) then G,
contains the clique of the cardinality 2.

If there are just three indexes i, Jj,k that nl,nj,ake V(Gz)
then Gz contains the clique of the cardinality 3 .

One of these three cases must come. Thus G ¢ L(0,1,4).

Remark: We believe that the following conjecture is
true: Every ambiguous graph contains a subgraph,fs shown in

Figure 2.
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