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Abstract: We prove that if ‘¢ is a class of Tyche-
neff spaces and the class of ‘¢ -pseudocompact spaces
equals te the class of compact Hausdorff spaces then the-
re exists amn B ¢ ¢ such that ‘¢ \ £E} has this property,
too. This amswers a question of A. Sostak.
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1. Introduction. Classes of topological spaces satis-

fying many of the properties of the class of compact spaces
are widely investigated by toPologists. This trend includes

studies of reflective subcategories of Hausdorff spaces,
topological extension properties, ¢ -pseudocompactness and
80 on. If € is a class of Hausdorff spaces then an <% -
regular space X is said to be ‘€ -pseudocompact provided
that for any E ¢ ‘¢ and for a continuous map f from/x to
E ck gf [ X1 is compact. So {R} -pseudocompactness is
just pseudocompactness. % -pseudocompactness has many of
the properties possessed by pseudocompactness. For examp-
le an 4 -compact space is ¢ -pseudocompact if and only if
it is compact. The basic references for this material are

in (6] and in (7). The class of “%-pseudocompact spaces
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will be denoted by P(4).

It is necessary to remark that ¢ -pseudocompactness
defined in [6) is quite similar to the pseudocompactness
property introduced in [7] but is not the same., If ¢ con-
sists of Tychonoff spaces and contains the space [0,1]= I
then P (%) is a pseudocompactness property in the sense
of [7].

Another characterization of % -pseudocompactness is
based upon the following assertion. Let £ be a continuous
map of X to E. Then the following statements are equivalent

(i) cz, £(X] is compact

(ii) If 4 is an ultrafilter on X then the filter
£ [%0] converges in E.

In this paper such classes ‘¢ are investigated for
which % -pseudocompactness ie equal to compactness. This
problem was posed by Sostak in [6].

We borrow the notion of k-closure from the theory of

k -compact spaces. (See {3].) If a topology on X and an
infinite cardinal kX are given then the basis consisting
of all sets N 4§ Gj:ij} (where Gd is open for je J and
Y Jl<k ) defines a new topology. The closure operation in
this topology will be denoted by e£, .

The space Ik\ti(l)} can be familiar as an universal
k' -compact space. We need that [3 (X<~ 4(1)3) =
= Pk(lk\ §(1)3) = I¥ for x >w@ (where 3« stands for
the k-compactification). (See (1] and L41.,)

2. Results

Ismma, Let Y be a Tychonoff extension of X and k be
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an infinite cardinal. If pe¢ !\cl + X then there is a

continuous map £:Y—> 1X such that f(p) (1) and £(p) &

¢r(x].
Procf. Because of pgcl , X there are reighbour-

hoods Gj(.'jeJ, {J|=Xk) such that n-iGjnZ:;]eJi = p,
Let fj be a continuous functiom from X to I such that
j(p) = 1 and vanishes out of G (jeJ). Then £ =(f b4 jed
satisfies the condition.

Theorem. Let k be an infinite cardinal. X is
{Ik\ £(1)%¥% -pseudocompact if amd only if Fk* X=X

Proof. Assume that X is {IK\ § (1)3 4 -pseudocom-
pact. Then X is {Ik\ {£(1)3} -regukr so it is a Tycho-
noff space. If p 6 (3 X\ (5 X then by the lemma there is
a continuous map f: 3 X —> Ik with £ | X:X —> Ik—?{ (1) ¢
and f£(p) = (1). Consequently c£f[X] is not compact (whe-
re cf stands for the closure in IX\ £(1)} ). So px=
= X.

o+
Conversely, let (3 , X = (3X. Then X is a Tychonoff
k
space 80 it is -(Ik\ §(1)% § -regular. Let £:X—> Ik N\
N £(1)3 Dbe a continuous map. Using the k+-compactneaa of
Ik\ §(1)% £ admits an £ pk,,, X—> Ik\ {£(1)3% extensions,
-~

SeclflXlc clff(zk+ X1=c|¥[Ax)=F(FX] and we ha-
ve c 2L X] to be compact.

Corollary. If % is a proper class of spaces of the
form of Ik\ §(1)} then ‘€ -pseudocompactness is equal to

compactness.

Corollary. There are two disjoint classes 'il and
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%2 such that ‘ti-pseudoconpactneu is equal to compact-

ness for i =1,2,

Theorem. There is ne Tychonoff space E such that .
P(L{E}) is identical with the class of compact Hsusdorff
spaces.,

Proof. Indirectly, if P({E}) is the clase of com-
pact Hausdorff spaces then {B} -regulrity is the same as
complete reguhrity. So for every cardinal k } N £(1) %
is {E} -regular. We can cheose a k > &@ such that B is
k-compact. If t:Ik\ £(1)3—> E is a continuous map then
it admits an extension %: pk(Ik\ £§(1)3 )—>E i.e. £
:Ik--,b B. Hence eE' 4 [Ik\ £(1)%] is compact and se
=\ £ (1)} belongs to P (L{E%). T™e contradictiom proeves

the theorem.

Corollary. There is not set of Tychonoff spaces ¢
such that P (4 ) is the class of compact Hausdorff spaces.

Theorem. Let € be a class of Tychonoff spaces, If
the class of “€-pseudocompact spaces is identical with the
class of compact Hauudorff spaces then there is a space B
belonging to € with P(4) = P(E\{E}).

Preof. By the previous corollary ‘¢ is a proper class.
Hence there is an E from 4 such that 4 \ { E} -regularity
is equal to ¢ -regularity. So the inclusion P (4¢) c
c P(2N{E}) is evident. Let X be a space not belonging
to P (4). If X is not a Tychonoff space then X does not
belong to P(4\ §E3). If X is a Tychonoff space then
there are anF from ¢ and a continuous map £ of X to B
such that Y = cfy [X] is not compact. We take a cardinal
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k > @ such that P and Y are k-compact. Using the lemma
we get a map g: ﬁ!—’ 1* with g(p) = (1) for some p €
€AY Yeand gL¥lc IS £(1)F . I°N £ (1)} is net cem-
pact hence there are & G frem ¢ and a continuous map h
from IX\ 4 (1)3 to G such that e£g h[I¥\ £(1)31 is not
compact. h has an extension h: pk(Ik\ £QQ)3 ) — By G
f.e. D:1X —> ﬂ’k G. We observe that h((1) (3 8Na so G
is not k-compact, consequently G is different from E.
hogof:X—> G and hoego £LX] is net relatively compact
in G. So we have that X is nat ¢ \ { E } -pseudocompact.
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