Commentationes Mathematicae Universitatis Carolinae

Josef Mlc¢ek
End-extensions of countable structures and the induction schema

Commentationes Mathematicae Universitatis Carolinae, Vol. 19 (1978), No. 2, 291--308

Persistent URL: http://dml.cz/dmlcz/105853

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/105853
http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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END-EXTENSIONS OF COUNTABLE STRUCTURES AND THE INDUCTION
SCHEMA

J. MIZEK, Praha

Abstract: We present necessary ani sufficient con-
ditions for the existence of some types of end-extensions
of countable models, We discuss relations between these
conditions and the induction schema.

Key words: Countatile model, end-extension, inductiom
schema.

AMS: O2HO5, O2H15

Introduction. In this paper we shall present some
results concerning end-extensions of countable structures
and relations between the end-extensions and the induction
axioms., In § 1 we present a general form of the theorem on
end-extensions of countable model <L = U, where U is a the-
ory of the directed antisymmetric binary relation with an
arbitrary large transitive element.

In § 2, we present a necessary and sufficient condi-
tion for the existence of a Tl'n end-extension of a count-
able model ¢4 & U. The condition in question concerns the
validity of the schema H(TI ) in 9L . (For H(y ) see 2.0.)

In § 3, we discuss relations between the induction
schema for Z‘n and the schema H(ﬂ'n). Some consequences

are introduced in § 4. As a consequence of the results
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presented we obtain the McDowell-Specker ‘s theorem and the
well known statement that each countable model of ZF has
an elementary end-extension.

The present work has been stimulated by the Vop¥nka's
question as to whether every Sl—like model of the arith-
metic with the induction schema for Ao formulas only is

a model of Peano arithmetic.

§ 0. Notation and definitions.

0.0. By a language we mean & first-order predicate
language with = ., The symbol a designates a sequence 815000
cees8pe If @ ¢ A for i = 1,...,n, we write @ec i, For a lan-
guage L and & set A such that LNA = O we denote L(A) the
language obtained from L by adding all the ac A as constants,
Fm(L) (AFm(L) res.) is the set of all formulas (atomic for-
mulas resp.) of L. By %L = L we mean that ¢L is a structu-
re for L. The name of a€A is a. We suppose that LNA =0
(where A ={a; aeA} ) and we have Uk L(A). For T'
cFn(L) we put T'(A) = {9 (8); 9(X)eT and XTEFv(e)}i,
where Fv(g ) ={x; x is a free variable of ¢ § . We have
M(A)E Fm(L(A)). For ¥ F L, % = Land T'cFm(L) we
write U cy ¥ if YL is a T-substructure of & . Instead
of g H(%cypy & resp.) we wite th < & (& is an
elementary extension of L ) (¢L c & resp. (& is an ex-
temsion of €4 )).

For F:Fm(L)—» Fm(L), T € Fm(L) we define F(T') =
={F(¢); ¢ €T3 . By YT' we mean the set {(VX)g ;

@ €T and no member of X is bound in ¢f. Analogously we
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define 3T , V3T , ete. If TE€Fu(L), T'< Fn(L) we
put T T ={¢g ; there is some y e " such that
TH @ =93 . VWe write sometimes T instead T log.ax.
For T,SS€ Fm(L) we write T<S to mean that T+ @ implies
SrH¢ . T= S denotes T<S and S<T.

The variables for natural numbers are i,Jj,k,m,n.

0.1. Let < be a binary predicate, < € L. We deno-
te by A (L) = Ao the set of limited formulas of L (w.r.t.
< ). Weput M = = = byy Mo =VE,, 2n+1 =
= AT ,. Instead of ‘f&c."ntfr we write e & .

We write (3x) ¢ (x) instead of (¥ y)(Ix)(y<x &

& @ (x)) where x,y do not occur bound in ¢ .

T € Fm(L) is closed under limited quantification
(C1q(T")) if ¢ € T implies (Ix<ylg e T , (Vx<ylge
e T . Evidently Clq(T ) implies Clq(T'u = (T)).

If ¢, & ¢ L, L c & and de B we write A<d to

mean that a€ A implies ai’ d.

0.2. Definition. Let <L, & be structures for L

(< eLl), Te Fn(L). & is a (proper) T° end-extension of
@, U a:T‘Xr , if

(1) % c, % and A+B o

(2) if ae A, beB and b< a then beA

(3) there is a de¢B - A such that A<d.

We write @ a & for %a‘..".naﬂv . Instead of Fm end-
extension (end-extension resp.) we say elementary end-ex-
tension (end-extension resp.). We write EE (1) (EEn(%),
EE,, (¢X) resp.) to mean that there is a & such that

‘ULQF & (% Qnﬁ, L =<+ resp.).
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§ 1. End-extension theorem of countable structures

The main theorem of this section is formulated in 1.4.

1.0. Let L be a language with a binary predicate < ,
We denote by Tr(x) the formula (Vy<x)(Vz<y)(z<x). (The
x is transitive.)
U is the theory in L with axioms:
(V x,y)(3 z2)(x<2 &k.y<2)
(VY x)(3y)(x<y & Tr(y))
(Y x,¥y)(xcy — 1 (y<x)).
We have Ul x<.y—» x4y and, for every ¢ € Fm(L),
U (YX)yg = (VX)(VX<x)g
Ur (3¢ = (3x)(AX<x)g

l.1. For ¢ (x,y)e Fm(L) we denote by E(¢ (x,y)) the
general closure of the formula
(VW3 x)(3 y<ul(Tr(x) & g(x,y)) —
— (3 y<u) (3 x)(Tr(x) % @ (x,y)))
where u does not occur in ¢ . E(y) designates E(g (x,y))

for some x,y.

1.2. In the sequel, § 'will be a set of L-formulas
closed under & , 7 , subformulas, and containing all ato-

mic formulas.

1.3. lemma. Let Y wm U and, D@L(A). Then there is
a consistent Theory U in the language L(A) u { D} such that

(0) Uisasetof Y3d (A uiD} ) sentences and
Tr(D) e T

(1) if s w U, then ¥ cﬂ&:ﬁ' (up to isomorphism )

(2) if % » T, then DB - 4 and a 2 ¥ for every
aeA (i.e. A=< D"),

- 294 -



(3) if g(x) ¢ 3 $ (A) with exactly one free variable
x then & (D) is consistent with Uit 4w (3x)(Tr(x) %
& g (x)).

Proof, Weput T =4y ; v isa V 3  (A) sentence
and Y4+ w} and U = Tudig(D); e 3 9 (A) with exactly
one free variable x and

YU w (32)(Vx>2)(Tr(x)—> ¢ (x))} u{ Tr(D)§ .
Ir ryl(b),..., gn(Dle T we have U m (32)(Vx>2)(Tr(x)—>
— ¢ (x)& ... & g (x)). Taking a conveniently large a€ A
as the interpretation of D we have YL = TuU+ 91(D) & ...
cee & ¢ (D) & Tr(D)§ . Thus U is consistent. (0) and (1)
are evident. We prove (2): If & = U and a €A we have
YU w (I32)(Vx>2)Tr(x)~> g<x). Thus £ a<D; aeAa}s T.
From Dl"c A it follows that a<Dw' and Dl"< a for some a€ A,
which is a contradiction. We shall prove (3): From
A .- (3 x) (Tr(x) & ¢ (x)), the compactness theorem and the
properties of <« it follows that ’I'J' vi{ @ (D)} is consistent.
Conversely, let ¢ (D) be consistent with ¥ and let ¢ €
€ 3 $ (A) have exactly one free variable x. If
ek (3 x)(Tr(x)& @(x)) then ¢ b= (I z)(Y x>2z)(Tr(x)—
—» 79 (x)), Let a€ A be such that ¢ = (V x>a)(Tr(x) —
—> 1@ (x)). We have (V x>a)(Tr(x)— 1@ (x))e V] (4).
Let WL be a model of Yu { ¢ (D)} . From ¢ cy
B = (Y x>2)(Tr(x)— 7 @ (x)). But Pt = 8<D&Tr(D). Con-
sequently 2% = 1% (D), which is a contradiction.

Tl we obtain

1.4. Theorem. Let L be a countable language with a bi-
nary predicate < . Let § € Fm(L) be as in 1.2 and let ¢4

be a countable model of U.
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(1) If e=E(3d) thenEB . (o).
(ii) If Tred and EE 5, (t4) then ¢ W E(3 ).
(1i1) If ¢ = (V x)Tr(x) then EB ., (?L) iff
¢ w E(3D ).
(iv) If A s ® then EE g, (U0) iff O w E(32 ).

Proof. (iv) follows immediately from (i), (ii). We
prove (i). First, for a set T of formulas we denote by

VYV3T the set of formulas

We shall use the following formulations of the omitting ty-
pes theorem (c.f, [K]): Let J be a countable language, let
" € Mn(J) contain all atomic formulas and be closed under
subformula s, Let C be a set of new constamnts. Let T ¢
€ Y3IT be a consistent set of sentences and let

9n = (¥ xl...x%) qrn(xl...xnn)
be a countable sequence of V\/ 3 sentences. Suppose that
for each n, each finite set pe I"(C) sentences, which is
satisfiable in some model of T and each m -tuple 'Eec%,
the set p u-ttrn('é)i is satisfiable in some model of T.
Then there is a countable model of Tu {¢, 3 .

Let T be as in 1.3. We prove that there is a countable
model of the theory Toi(Vx)(x< 9"",&\‘/A x = b; aeA}.
We have (V x)(x<a—aN4 x =b)= (Vx)((x<g)Vv
VYA X = b). Thus it is sufficient to show that:

if «(D,T,e) is a sentence from $ (A uiD3}u C),CeC,
(%) eeC and c;(D,’C',e) is consistent with U then for eve-
ry aeA, there exists a model of U in which @(D,g,

e)% (e<a—>g¥a e Db) holds.
~ 296 -




Let ¢ (D,G,e)% e<a hold in a model of U. The formula
(3y<8)(32)(¢(D,Z,y)) is consistent with U. From
(3y<®)(32)y(x,Z,y) ¢ 3 $ (A) we obtain

o = (3x)(Iy<al(Tr(x)% (3 2) ¢ (x,7,5)).
We have ¢ m E((3Z)¢ (x,Z,y)) and, consequently,
o= (Iy<e)(Fx)(Ir(x)& (ID @ (x,7,y)).

Let beA be such that € k= b<a & (3 x)(Tr(x)& (3 27) ¢ (x,Z,
b)). Following the property (3) of ¥ we obtain the model
of U in which ¢(D,3,b)& e = b holds. Thus, (% ) is proved.
We prove (ii). Let @ e .. % . Bvidently ¥ F 0.
If ech, @(x,y) €3 & (4) and G w (I x)(I y<e)(Tr(x) &
& @(x,y)), then & = (I x)(Iy<e)) (Tr(x)& @ (x,y)). Let
de B - A be such that A<d. There exists a ce€ B such that
Wk d<ckTr(c)& (I y<e)glc,y). Let beB be such that
& = @ (c,b)&b<e. Evidently be A. For each a€ A we have
aﬁ'c. and, consequently, & k= (I x)(a<x&Tr(x)& @ (x,b).
Thus, for each a€ A we have % k= (3 x)(a<x&Tr(x)& ¢ (x,b).
One implication of (iii) follows from (i) and the order
one can be proved analogously as (ii).
Remark. In the part (i) of the proof we used only the
following property of § : if ¢ € § , ¥ is atomic then
v&y e d.

§ 2. T, end-extension theorem for countable struc-
tures. We work with countable langvage L
with bin. predicate < . The main theorem is formulated in

2.4.
2.0. For ¢ (x,y)e Fm(L) we denote by H(¢ (x,y)) the
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general closure of the formula
(Vu)((Vx<u)(3y)g —> (3v)(Vxcu)(Iy<vig)
where u,v do not oceur in ¢ . H(¢ ) designates the
H(y (x,y)) with some x,y.
We put o™ = yun(r)
where T < Fm(L). We write U (U% resp.) instead of U(n n)

(U(M)reap. )e

2.1. lemma. For nz O we have E:lq(TTml).

Proof. By induction on n. For n = 0. If ¢ € X, there
isa ¥ € A such that U ¢ = (3y)y . (See 1.0.) We ha-
ve

Uk (Yx<cu)g = (Yx<uld y)y = (Iv)(Vx<u)(Byvviy

and consequently (¥ x<u)y & S.go. The formula (3 x<ul)y €

'3 21{0 follows immediately. Suppose the proposition is
true for some n. For ¢ ¢ = n+2 e have some y € TT ., such
that U" = ¢ = (3 y)y . This follows from the induction
hypothesis. Thus,

Ul e (vx< u)g (Vx<uw)(Ayly = 3 v)(Vx<u)(Ty<v)y.

From this and from the induction hypothe!iia we have (Vx <
unt

g+l
<ulg € &4 o Now (Ix<wlg e = .,

immediately fol-

lows.
2.2. lemma, For nZ 0, UM is equivalent to Uu E( =,).

Proof. (a) UuVE(X )<U. Let ¢(x,y) € = be such
that (V y<u)(32)(Vx>z)(Tr(x)—> 7 ¢ (x,y)). We have
(V x> 2)(Tr(x)—> 31 @ (x,y)) € T, By using H(TT ) we ob-
tain (3v)(Vy<uw) (3 z<v)(VY x> z)(Tr(x)—> -1 ¢ (x,y) For

v< x and Tr(x) we have z<v—> z<x. Thus,
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(Av)(Y y<u)(Vx>v)(Ir(X)—> 1 @ (x,y)) holds and, Conse-
quently, U? (Y y<u)(3 2)(V x>2)(Tr(x)—> 7 @ (x,¥)) —>

~—» (3 v)(V y<ui(VY x> v)(Ir(x)—> 7 & (x,y)). The 188t for-
mula is equivalent to E(% (x,y)).

(b) U UUVE(X ). For y e TT, we dencte by ¥ (x,y)
the formula (3y,<¥) y (x,57)& Tr(y). If

(1) (Vx<u)(3y) v (x,y)
then
(2) (Vx<u)(32)(Vy>2)(Tr(y) — ¥ (x,3))

We prove the statement (b) by induction.
Forn =k = O, We have ¥ € 4 . The formula

(32)(Vy>2)(V x<u)(Tr(y) — ¥F (x,¥))
follows from (1), (2) and E(- % ). Thus, there is a v such
that Tr(v) and (V x<u) ¥ (x,v), and consequently (V x <
<u)(Iy<v)y (x,y). Suppose (b) is true for some n. We put
k = n + 1. By the induction hypothesis, ¥ e TT 221 and UP <
< UVE(XE ,,,). From (1), E(~3 ) we obtain a v such that
(Vx<u)(3y<v)y (x,y) analogously as in the case n = O.

2,3, lemma. If nZ0 then L= U anl EEn-bl(a ) imp-
1iea ah Uno

Proof. Let & be such that Ua , & . Let deB - A
be such that A< 4. We prove the lemma by induction on n. For
n=0;: Let ¥ (x,y) € A (A) and let ae A be such that
U (Vx<a)(3y)y . Wehave & w (Vx<a)(3y<d)y.
Thus, & k= (3 v)(Vx<g)(Ay<v)y , and consequently

A= (3v)(Vx<u)@y<v)y.
For n = 1: If ¢(x,y)€ TT,(A) then there is a ¥ ¢ A @)
such that Ur¢ = (V t)y . We have & k= U, If Y = (Y xca)
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(3¥)g (x,y) for some ae A then & = (V x< 8)(3 y<_d_)fp . let

us suppose
(x) U= (Yv)(Ax<a)Vy<v)rg (x,y)

Thus % k= (Y v)(3 x<8)(¥ y<v)(3 t)1y holds. By using
H(my ) we have ¥ k= (Vy<v)(3thy=(3 w)(Vy<v)(It <
<w)y . Thus, (k) implies ¥ k= (¥ v)(I w)(I x<a)(Y y<
<vX3t<w)ry . The last formula is from TT,(4), and
consequently it holds in & . For d we have ¥ = (I w)(3d x<
<a)(Vy<d)(3t<w)ay . Thus, & F (Ax<a)(Vy<d)e ,
which is a contradiction. Now ¢4 = H(g), and ®L & H(TT,)
is proved.
For n = 2: First, we prove &= H(A ). For ¢ ¢ 4,

we have H(g) € TT3. From this, ‘4 = H(p ) and ‘%c3ir
we obtain ¥ = H(A ). We prove P = H(TT,). If W= T 5(4)
then there is a ¥ ¢ 21(5) such that US(A) - 9 = (V t)y .
This follows from 2.1. We have ®f = U° and & wm= U°, If

W (Vx<a)(dylg then & = (Vz)(Vx<cg)(dycd)(Vtc
<z)y . Thus, e (Av)(VN(Vx<g) @ y<cv)(Vi<z)y
holds. We have (Vx<a)(3y<v)(Vi<z)ye =Y B(a), am
o (3v)(V2)(VXx>a)(Iy<v)(V tecz)y . From this we
obtain € = (I v)(Vx<a)(V2)(Iy<v)(V t<c z)y . By us-
ing 4! = E((Vt<z)y) (this follows from €L w H(TT;) and
2.2) we have YU b= (Vz)(Ay<vi(Vi<z)y — (Ay<v)(V t)y,
Finally, % w (A v)(Vx<a)(Iy<v)gy .

For nz 2 we prove:

(%) ®e & implies Uw U and £ p U2

By induction. For n = 2 the statement (% % ) holds. Suppose
(% % ) is true for n. Let & be such that ne . & .

- 300 -



First, we prove & = H(TT _,). If ¢ € T, then H(g) e

-2

€ ﬂgfz holds, By using the induction hypothesis

(% = U™2, @ = H(TT,_;)) we obtain & = H(TT_ ). Thus,

& UL e proved. We shall prove <L H(T\'n+1). Ifg e

€ T ,1(4) then there is a % e = _(A) such that

Ml AYI- @ (VO ¥ . Ifr €& = (Vx<a)(3y) ¢ (x,y) then
e (V2)(Vx<a)(3y<d)(Vt<z)y . Thus,

& v (AV)(V2)(Vx<g)(3yev)(Vt<z)y holds. We have
(Vx<a)(3yev)(Vicz)y e = gn—l(é)(g), and consequent-
ly 9w (Av)(V2)(Vx<a)(Ty<v)(Vi<z)y . By using
‘9 = E(y ) we prove as in the case n = 2 that

U = (3v)(Vx<a)(Iy<v)y holds. The proof is finished.
2.4. Theorem. Let ¥f be a countable model of U.

(8) For nz1 we have: EE . (00) iff ¢ k= U" iff YU UV
UE( zn)-

(v) EE (f}) iff 9 = U iff ¢4 b= Uu E(Fm).

Proof. (a) Only the part that €L = U” implies
EE ,, (L) is not easy. For nz1 we put d’g ={9 e Zn(Trn
resp.); there is a ¥y € TTn (Z‘n resp.) such that
Vr o=yt
d"?l ={o&y;9,y e d’g? Ud"ﬁ
- m
= U &L

n

Evidently, o}, is closed under % , =1 , subformulas and con-

tains all atomic formulas. If ¢ e o"n then there is a @7 €
n =

€M _anda ¢,e = such that U° ¢ =g.ke=9,.

Thus, U + E(3 d,). By using 1.4 we obtain a & such that
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/.2 Tyag, W, We have = _, & d': and, consequently, T, &
€ V3Z, ,5V3d, . Tis implies Ua 3.
(b) follows immediately from 1.4 and 2.2,

or.) (= _..)
2.5. Proposition, For nz O we have U Nau n+l .

Proof. For g e =, ., we have a ¥ € T such that
U+ @ = (3t)y . Assume (¥ x<u)(3 y)g (x,y) is provab-
le in U", Thus, U"+ (V x<u)(32)(3y,t< z)y . By 2.1,
we have (Jy,t<z)y € T\'En. From this we obtain U" + (3 v)
(Vx<u)(Iz<cv)(Iy,t<z)y & Tr(v). Consequently,

Ul (3v)(Vx<ul(Fy<v)(It)y , ie. Uk (Av)(¥Vx<
<u)(3y<v)ey .

2.6, Remark. Every countable model of ZF (Zermelo-Fra-
enkel set theory) has an elementary end-extension. This fol-
lows immediately from 2.4 (b).

§ 3. Relations between the schemas H(TT ) and Ind(TT,).

3.0, For @(x) we denote by Ind(@ (x)) the general
closure of the formula

(VX)((Vy<x)@ (y) —> ¢ (x))—> (Vx) g (x)

and by Min(@ (x)) the general closure of the formula.
A x)g (x)— (Ix) (@ (x) & (Vy<x)ng(3)).

Evidently, Ind(¢ (x)) = Min(a ¢ (x)).

3.1. Theorem. For each n2 0 we have

U™u Min( Ay) s Min(TT U Sn).

Proof. By induction on n. The case n = 0 is trivial.
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Suppose the statement is true for n. If y, €T ( =
resp.) there is a y € 77 (=  resp.) such that
V(3D y, = Ay (U - (VE) y_ = (Vx)y resp.).
Thus, if ¢ € T .. (= ., resp.) then there is a y ¢
e X, (T resp.) such that " - (Vx)y = ¢ (" r ¢ =
= (Ix)y resp.).

(1) Let ¢ ¢ X ., be such that $ has the form
(3y)y with some y € T . If U™ - (3 x)g (x) there is
a u, such that vl Tr(u,)& (3 x<u,) ¢ (x). We put
fr (x,y) = ¥ (x,y)v (7 (3 z)y (x,2)). We have 1?' 3 TTn+1
and U™ - (Y x< u, (3 ¥)¢ (x,y). By using H(TT__.) we ob-
tain & v such that (Vx<u )(3y< v)'«?r(x,y). Let ¢ (x) be
the formula (3 y<v)y . We have ¢ _(x)e€ TT . By the in-
duction hypothesis there is a u, such that ¢ (u ) & u <
<u hk (Yucu ) g (u). @(u)) follows evidently. For
u<u, we have - (3 y<v)y(u,y). Suppose (3 y)y (u,y). Then
(3 y< v)y (u,y) follows from (3 y< v)w?‘(u.y), which is a

contradiction. Thus u<u, — - @ (u).

o
(2) Let g e Trn+1 be such that ¢ has the form
(Vy)y with some y € Sn. We suppose (3 x<uy) @ (x) &
&Tr(ul). We put
{;\r (x,y) = vy (x,y)v ({(V2)y(x,2));
ye Tl ;41 follows evidently. Furthermore, we have (V x <
<uy)(3 y)§ (x,y). We choose a v such that (Vx<u)(3y<
<v){ by using H(Y ) and put g (x)= (Vy<v)y . ¥e ha-
ve ¢ € S.U: and in the same way as in (1) we finish the

proof,

3.2. let L be a countable language with binary predi-
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cate < and a constant C, In L consider the following theo-
ry S:
< is a non symmetric linear ordering with the least
element O and without the last element satisfying me-
reover,

x+0— (Jy)(y<x&(Vz<x)iz<yvz =y)).

Evidently S has a TI, system of axioms and U<S. We
define ST , S” analogously as u” , U% in 2,0,

3.3. Proposition. S™< Su Min(TT ) holds for nz 0.

n+l

Prodf by induction on n: Forn = 0. Let ¢ € A be
such that

(Vx< (A7) g (x,7) & 21(3v )NV x<T)(Ty<v) @p(x,y).

Let uoé'ﬁ' be the least element t such that - (Iv)(V x <

<t)(3y<v)g@ . We have O<u . We take a u, such that

(4
U< u —> u<u v u = Uy (the predecessor of uo). There is a
v, such that (V¥ x<u;)(Iy<vy)y . We have u,< U. Thus,
there is a y, such that 9(u1,y1). Let v, be such that
v,< v, and y;< v, Thus, we have (V x<u )(Iy<v,)gp , which
is a contradiction.

Suppose the proposition is true for n. let ¢ ¢ TT'n be
such that

(VxeW (AW @ (x,y) &1 (3v)(V x<W(Ty<v)g .

By using the induction hypothesis and 2.1 we obtain
-1

ANV x<W(Fy<vige T,

that u  is the least t for 1 (3 v)(Vx<t)(Iy<v)g . The

« Thus, there is a wu, such

proof can be finished as in the case n = O,

3.4. We put for T»U (T+ S resp.) and " € Fm(L):
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T = TU Min(T ).

™
We denote Tmnuzn) (T(m) resp.) by T, (T, resp.).

From 3.0 - 3.3 and 2.5 we deduce for nz 0
)

(=
n_ n+l n n
U'=0 , Un'<Uo andS<Sn+l.

We can visualize these results in the following diagrams
(where T—> S indicates that T »S)

Ug<—- P Un<—— Un+l<— .oe w=— U:’

| Iy |

Ust— ,,ice— U «— U 1<— veo a— U,

o n n+
Soe— e Shea— Sl L < 5T
|
305 .oo ‘L \\l’n+>— ceeS=— S,
3.5. Proposition. If nzZ0, ¢ k= s(Tl'n) md & c ¥,

then & =5 .
(m,)
Proof by induction on n: For n = 0. ¢ e Ao implies
Min(@ ) € TT,. Thus, & = S . Assume the statement is valid
for n, lLet ¥ c 3aCr be such that % = S(fT Xk We deduce

& w 5Pl by the induction hypothesis. For cp e TT we have
n-1
H(g) e_ﬂ'm3 . Thus, & w= H(g’) and, consequently, aﬁ- e s7.

If @ e T ., then Min(g)e Tl' Now, & k= Min(g ) fol-

n+3°
lows immediately.

§ 4., Relations between end-extensions and the induction

schema.

4.0. From the results of the previous sections we ob-
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tain immediately

ghegrel.
(@) If n20, €L wmU, 8nd EX . (k) then €L w=U,.

(al) If ¥ = U, and L has an elementary end-exten-
sion then ‘L = U, -
(b) If n21, A Sgr ) and L is countable then
n+l
BE ().
(bl) If AL m S, and Ol is countatle then there is

an elementary end-extension of €.

4.1, Definition. The model X of U is said to be ¥,

like if
(1) the cardinality of A is ,,
L 44
(2) the set {a€A; a< b}i is countable for all beA.

Proposition, Let ¥4 be an #,-1ike model of U . Then
Uw U, .

Proof. We have L m U and consequently the proposi-
tion follows by using 3.1.

Proposition. For a countable model ¥¥ of S, the fol-
lowing statements are equivalent:

(i) < has an elementary end-extension

(ii) U =S,

(iii) L ws?

(iv) <L = E(Fm)

(v) € has an ¥ -like elementary end-extension.

Proof, Only implication (iv) —» (v) needs an expli-
cit proof. Assume (iv). We can construct the end-elementary

@, chain with the first member U . (Use 2.4 (b).) The re-
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quired .Klflike elementary end-extension is the limit of
this chain.

4.2, Let L be a usual language of Peano arithmetic.
The arithmetic A has the closures of the following formu-
las for axioms:

x+0=x, x+y=2y+x,x+(y+2)=(x+y)+z,

, x+y = (x+y),
x.0 = 0, X.y = Y%y X.(y.2) = (x.y).2, x.y‘1 = X,y + X,
x.(y + 2) = x.y + x.2,

AUx<x), X<y&y<z2—> X<2Z, X<YVX = JVF<X, X<y <>
x<yvx=y, 0=xv0cx, 0<x—> (Fy<x)(y’ =x), x<x’.

All axioms of A are TT, formulas, and A+ x+0 —>
—» (3y)(Vs<x)(z<yvz =y). Thus, S<A, We denote A, by
P (as usual).

Propesition. (1) P=AlmA u E(Fm).
(2) Let UL be a countable model of A.

YU = P iff ¢L has an elementary end-extersion.
(3) If nz1l and & is a countable model of Ap
then EE, . (74).
(4) If n20, O mA and ER ,,(Th), then ¥ »= A .
(5) If nz1l, & is countable and €¢L = A, then
ER,,,(T0) iff O =A" iff U= AU B(3)).

n+1)
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