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CONDITIONS FOR LOCAL ASYMPTOTIC NORMALITY OF EXPERIMENT
SEQUENCES

Ivan VOINY, Praha

Abstract: Conditionms concornlng T.s-dlfferencubllity
of square roots of densities ensuring 18cal asymptotic nor-
mality of the sequence of independent experiments are pre-
sented to generalize the result of Roussas [2], Under & lit-
tle stronger conditions the asymptotic linearity of the men-
tioned derivations is proved.
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In this article only independent experiments will be

treated, which means that the following scheme will be used:

(X, 0 Ry PCe ,t)) = (fTv E‘L’V"B@L ,1";‘? P (e ,t)), teEy,
moreover we shall assume that probability measures Pk(t) are
absolutely continuous with respect to a 6 -finite measure m
in a neighbourhood of some parametric point ty:

aP, (t)
dm

= pk(t) ’ te U(to).

We call a sequence of experiments locally asymptotical-

ly normal (LAN) when the limiting distribution of likelihood

dPn(t+h/ Vn)
ratios log ————————— is Gaussian. Such a property is uti-
aprP_(+)
n
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lized when the efficiency of estimates or test criteria are
examined (see for instance Héjek [1)). Therefore the main
goal of this paper is to find general conditions implying
LAN in the case of the described independent experiments.

The regularity conditions for LAN of the sequence un-~
der consideration are to be expressed in terms of roots of
demsities p, (t), say

8 (t) = (py(t))1/2

treated as members of the space Lz(m) of square integrable
functions. More precisely, our conditions concern Fréchet
differenciability in 12(m) of these roots:
Condition Al: ek(t) are Fréchet differenciable in parametri-
cal point "o’ i.e.

. -2 - - ne 2, -
nn}lﬂno“h“ [ (ax(tg* B) - 8 (ty) - h'g(t,))%m = o,

uniformly in k = 1,2,..
Condition A2, Putting

G, = (a.(t),a.(t )
x AU NS T

then there exists

n
linn"l 3 g =a.
Nn-~»00 k=1

Condition A3,

1im (nG

-1 n 2 I L
s ) Eif Dirj29Pc(ty) =0, 1£j%r,

[j ’ J]
Anl:

where Dc(j1 is the j-th component of

Dy

dka;l for 8,> 0

o for sk=0

-282 -



and ‘nk {x.Dk[nzn G[J,j]e§ ’ ¢ > 0.

Condition A4. Derivations dx(t) exist in a neighbourhood of

t, and are Lz(m)-continuoua at the point t, uniformly for

k=1,2,.. .
Let
-1/2 £ -1/2
C., = (t, + h)
mh ~ B 1 Dy(ty +n
ﬂ' =-1/2
Pnh = K=l Pk(to +n h)o

Now, we are in position to state our main results.

Proposition 1. Assume that A1,A2,A3 hold. Then for every boun-
ded sequence {%3 is

dPnhn
1) logdp— - Zhncno + 2h Gh — O
no

in P, Probability. Moreover, if h, —> h, then

dPnhn
(2) L (1log / Pp,) —> N(-2h“Gh,4h ‘Gh)
dPno

ap.
(3) L (log

n . ’
/P, )— N (2h°Gh,4h ‘Gh)
no nhn

(4) L (Cuy / Byy) — N.(0,6)

(5) L (Cpp / Py )—> Ny (2G,0),

where L(X/P) denotes the distribution of a random vector X

with respect to a probability measure P.

Proposition 2. Assume that Al-A4 hold. Then for every bound-
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ed sequences {h, 1}, {g,} is

(6) “cnhn - Cho *+ ZGhnIl——’ 0 in P, -probability

and

(M I (gﬁ:n) | Ppy) — Nap (-gah) ) (2 g))

c 2ag ) (0 G)
(8) L((c:;)lpngn)-—»nzr((m(g_h) ' e of

whenever {hn} ’ &gn; are convergent sequences in Er with

limits h, g, respectively.

Assertions of Proposition 1 are proved by Roussas-Phi-
lippou (1973) under a little bit stronger and not so compact
assumptions. A close examination of their proofs leads imme-
diately to the verification of our Proposition 1, the proof
of which will be therefore omitted here. Our main goal is
Proposition 2. In what follows we present its proof.

Relation (2) implies that sequences {Pnhn}, {P,,} are
contiguous (see Roussas 1972, Theorem 3.1). It will be conve-
nient to construct a sequence of probability measures, say

iR,} , also contiguous with {P }. Let R be defined by

a
-EE = a, TT s 8,
ap, x khy, kg,

where
-1 - f e e am=[[ TTi[e2 +82 -
& f x kb, “kg jj‘ e 2 [ kh, © ®kg
2
- (s -8, )°)am.
khn kgn ]
It is possible to assume, without loss of generality, that
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hn—»h and g, — g.

Then
a,— exp (h - g)‘G(h - g)
and ap
dP,
d 1 nh, 4 n
log - log a, - % log - ¥ log —>»0
no no no

in P, -probability. These relations, together with (1) and
(4), give

dR
(9) L (log —2- B )— N(- ¥(h+g) G(n+g), (h+g) ‘g(h+g))
aPno
and, consequently, {R,¥ ,{P, i are contiguous sequences
again according to Roussas (1972).
The contiguity of sequences {Bn},{l’nhn} ,{Pno} provides

a substantial simplification because we need not distinguish
among them when proving convergence in probability. This con-
venient tool will be now used for checking following asympto-
tic relations,

8

kh, ~ ®ko °kh, ~ ®ko
(1) & —2——- 3 —2—— -n’6(g, -h)— 0
akhn Bkgn
®knh_~ ®xo 1.
(1) = —= - bylng = 7 hpOl4ey - 3b,)— 0

’khn
in probabilities R , Pnhn’ P ,» where{h }, {g,} are bound-
ed.

The convergence (10) will be verified with respect to
underlying probability measure R,. The statistics
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v, = ;%1 U, = = (.’_"hn..___ e 'n.‘n ~ ko ) .
"y ke

= é:l‘ (.k% - 'ko)('kgn - 'ﬂxn)('kbn ‘kgn)-l
have finite means and it is easy to prove that
a2) By Uy - b0(e, - by) —> 0.
Put

U:k =0, 0 l<ec

=0 lg,lze

for some ¢ >0.

Now, to prove (10), it is necessary (and sufficient) to show

that

(]
(13) Poo(Upse X U )—> 0
(14) BU, -3 XU, —0
anm

(15) P (IZEU, -3 )|>e)—0, ¢ >o0.
The first task is somewhat formally complicated. We may -
write
Pno(un + = U:k) P Pno(n:x]vnk) z c/\-%n "%"‘%’gz %.) +
-2, 1 Y
+ Pno(‘in 'khn'ksn'ko‘ e Pno('('kb.n = ’ko)('khn' ‘kgn”
-2 -2
loy oz ¢) + Pno(":xl'kh:ksn’ko -1z %) £
-2 o p1/2 08y _
« ﬁ Pl ’ko('khn" ’ko)[‘(_’kgn -8, -0 'gla)
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- ('khn" s - n'mh;dk)]l z B+

+ = P (l(ay, -8 1/zhnd,k)n"]‘/zc’l'(gn h, e, ‘--5)
k=1 X° kh, ko ~ ko

+ 2 P I ntiley - w2 §) ¢

P, (m"kh.n kg, ko -1lz %)é-g- [=[ (-khn- lko)zdn)l/z.

] oy - oy - n T A %am] V2

+ [ZI ('ksn -8, - n~1/2 'dk)zdn) } *

RIS opn - oo - 2 ongay)%en]

[=] @le, - b)) %am n71) /2 4

1/2

f | nfa,d(g - h)|dm+
SIS BRI 2 L

> P (mx lskh ks"ko = l" %).

But s‘.j (akhn cko)zdnand Zf (tlk(gn bn))zn dm are
bounded while sums of the type S.f (akhn 8o - a1/ zh!;dk)zdn

tend to zero and the last sume of integrals does the same ac~-

cording to condition A3. Therefore it is sufficient to prove

that
P, ( max 822 _ 11z H— o.
no k=1,..,n khn kgn ko Zz

This probability, however, is not larger than
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Pno(n;x { ’;§(°khn'kgn' 'khn 8ol z %) +
+ Pno(“:x | 'l:hn'l-:% -1lz %)é Pno(n:x | 'kg;;z - llzé) +

+ Pno(m:x | °ko';l?;h -1fz -]2'-) + Pno(mk“l’khn aiﬁ - 1|ZI) =
= A, + By + Cpo

For An we have

-1 1

A, = Pno(mfﬂakgn’ko -1|z )£ 64 {zf (sksn -8, -
~1/2 ¢s y2, Y1/2 , -1 (g d,)?

-n gpdy) dm] +n 3, 2 8pdy/ dm —
% I ™ Mok 43
— 0
and the behaviour of Bn and C, is evidently the same when
Pnhn, P, are used, respectively.

Now, we show that the difference between means E U, and
BEX fok with respect to R -probability is asymptotically ne-
gligible.,

[+ ’e 32
lEUn-Ez:ngl-_‘ElUn- £Unk|é{m;{mm{|zc} nZ |

| (s -8, )(s -8 )ldm £
xh, ~ ®ko’®kn " ®kg

£a, = S
LU, g1z el

2 1/2
4a [= f (skhn - skgn) dm]

| (s -8, )(s -9, )] dm £
xh, ~ ko’ ‘Skh, ~ %kg,

-288 -



1/2
{2 [ (o - oy, - 0~ 2’ )%an) 77 ¢

- 3 2 1/2

» [l J  (nla)Zam) =A (B +C).

= flU,,.g.lzc} nk § n n n

It is easy to see that the A, 'are bounded and the sequence

§Bp} tends to zero. Moreover, we may write

Cﬁ =n-1 =/ (hl;dk)zdmén'l ZI neiodm + n-lzf (h,:dk)zdm .

{luglzel {luglz e} {2z ned }
But the first term is equal to
=P, {\(ekhn - ’ko)(akhn - akgn)(sknn ak&n)'ll z c}

and therefore tends to zero as it has been proved previous-
ly. The second one also tends to zero according to A3. Hen-
ce C,—> 0 and (14) holds. The simple fact that Varzvgk—r
—> 0 leads us to the verification of (15).

To show that (11) is implied by (10) it is sufficient

to prove that

s -8
kh ko
s —2 -, -%h0(2g -h)—s O
s n&n
kg
which is obvious when considering P, as the underlying

népn

probability measure. Now, using (10) and (11) with g, = 0

we have

h (Cng'1 - Cn°+ Zng) —» 0
for each bounded sequence {h,} , from which (6) follows rea-
dily. Finally, the asymptotic normality in (7) and (8) is
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implies by (6) and Proposition 1.
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