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SEPARATION OF TWO CONVEX SETS BY OPERATORS

Karl-Heinz ELSTER, Ilmenau, Reinhard NEHSE, Halle (Saale)

Abstract: In this paper we generalize the usual sepa-
ration theorems (where the separation is carried out by (con-
tinuous) linear functionals) to separation involving (conti-
nuous) linear operators mapping & (topological) vector space
in a (normal topological) partially ordered vector space.
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§ 1. Introduction. In our paper [8)] some assertions on
separation of convex sets by means of linear operators are
published, where a suitable formulation of the Hahn-Banach
theorem for operators is used (cf. also [13] and[14]).

In this paper we develop a different approach for the
proofs of such separation theorems using the separation of
convex sets by linear functionals.

Simultaneously, the theorems of this note contain classical
assertions as special cases,

The proof principle given here is more convenient than
that in [8), since this new way of the proofs is easily trans-
formable to continuous linear operators. Moreover, we can

prove stronger assertions than in (81,
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§ 2, Notions and terminology. The used terminology

corresponds to that in [1],(5],(13] and [16]. All vector
spaces considered in the following are real vector spaces.
We will use the notations "partially ordered vector spa-
ce" and "topological (partially ordered) vector space" in
the common sense (see [131).
Moreover we apply the abbreviations:
xé¢y iff x£€y and x#y,
F :={x|xeF, x20%,
F,:=F \N403.
The set F, is a proper convex cone,that means

F,A(-F,) =40} ; F, +F, = F,_ .

A (partially ordered) vector space F is said to be topologi-
cal, if a Hausdorff-topology is defined in F such that the
mappings

(x,y)—> x +y of FxF in F
and

(A,x)—> A x of ReF in F
are continuous (and F, is closed in this topology).

We say that a (topological) partially ordered vector space

F has the least upper bound property, if each non-empty sub-
set of F possessing an upper bound in F also possesses a
least upper bound in F.

A topological partially ordered vector space F is said to

be normal, if there exists a basis of neighbourhoods of O

such that each element V of that basis has a representation

in the following way:
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V= (V+FIN(V=-P),

Let E be a real vector space. For a non-empty subset A of
E denote
Ix the affine manifold spanned by 4,

1A the intrinsic core of A:

iyi={xeE lVyelA.Be = € (x,y)>0: x +r(y - x)eh VYre
Fe,el?

(if 1A = E we will write A%:= %A for the core of A) ’

84 the set of points in E linear attainable from A:

85:= {erlE YyehA, yEx: y + t(x - y)eAVt el[0,1)3.

Furthermore, we define
Ppi= au®a, Ba:= BaNia,

For a non-empty subset A of a topological vector space
E denotes int A the set of all interior points of A.
Let both E and F be (topological) vector spaces. Then
& (E,F) and &’(E,F) denote the real vector spaces of all
linear operators and continuous linear operators L:E—> F,

respectively. In particular, we will write

E* := &£ (E,R), E":= £/(E,R)
for the algebraical dual space and (topological) dual space
of E, respectively, where the vector space R of the reals

has the usual topology. < u,x> denotes the value of ue E*

or ue E° in the point xeE.
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§ 3. Separation Theorems. First of all we will give

the basic idea of the proofs of the following separation
theorems.,

let E be a (topological) vector space, and let F be a
(normal topological) partially ordered vector space, let
yo,€F, and y eF,  , respectively. If ue E* (us E'), u%o0,
separates the sets A and B in a certain sense, then the ope-

rator L € £(E,F) (L 6 £/(E,F)) defined by
(1) L(x):= {u,x ) y,, x€E,

is a linear (continuous) operator which separates these sets
in a certain sense. The continuity of L follows from the con-
tinuity of ueE’, the compatibility of the topology in F with
the vector structure and the normality of this topology.

Now let E and F be vector spaces as given above. Then
from the linearity of Le&(E,F) and L e £/(E,F), respective-
ly, it is easy to see that we have the following implications

for two non-empty subsets A and B of E,

1. yoe F

} ==> 0£L(z) VzeB - A,
Lix)§y € L(y) V(x,y)e AxB

2. yoeF
== 0&L(z)VzeB - A,

L(x)& Yo% L(y) V(x,y)e AxB
or

L(x) & yoé L(y) V(x,y)e Ax B
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3. y,eF
L(x) &y, £ L(y) V(x,y)e AxB
and { O£ L(z) Vze AxB,
=
Ixed: Lx)ey, JzeB - A: 04« L(z).
or

IyeB: y < L(y)

These implications hold true if a Yo€ F with the pro-
perties assumed in the implications doesn’t exist, but L(x)
and L(y) for all (x,y)e AxB are comparable as demanded abo-

ve.

The conversions of the implications hold true for F = R
(see [9]). However, this is not true for operators L€ & (E,F)
and L e&£’(E,F), respectively, except that F has additional
properties (e.g., if F has the least upper bound property).
Therefore, if two sets A and B of E are separated by a liﬁe-
ar (continuous) operator in a certain sense, then an analo-
gous separation of O and A - B is possible, but not necessa-

rily conversely.

3.1. Separation by Linear Operators. In this section

let E be a vector space and let F be a partially ordered vec-
tor space with F_ ¥ #.
We obtain as a stronger result than in [8], Folgerung 10,

Theorem 1: ILet A and B be two non-empty convex subsets
of E and Bi& B, There exist en Led£(E,F) and a y,eF, v
v (-F,) with

(2) L(x) &y, 4 L(y) V(x,y) € AxB,
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3) y,¢Ly) Yyen'

if and only if An Bl = g,

Proof: 1. Let AnBY = §. Then there exist a ueE*,

u%0, and an <&« € R such that

{u,x)éoc £ u,y) Y(x,y)eAxB,
< < {uy? VyeBi

(see [101, § 17, or [11]). Hence we obtain
{u,x) yobowy £<u,y)> ¥, Y (x,y)e AxB
¥y« LUy ¥, ¥ yeB'
for y e F,, . L 6 &(E,F) defined by (1) and y,:= <y, are
convenient,

2, If there exists an operator Le¢ & (E,F) which has
the properties (2) and (3), then the assumption An B+ g

leads to a contradiction.

Theorem 2: Let A and B be two non-empty subsets of E
and A = AY, B = B', There exist an L & &(E,F) and a yie Fu
U (-F,) with

L(x)éyléL(y) V(x,y)e AxB

if and only if AnB = g,

Proof: ILet ANB = @. Then, by [10], there exist a

ueE*, u$0, and an « € R such that

{(u,xY<oc < {u,y> VY (x,y)e AxB,

For y e F,, it follows

{(u,x Yo xy, £<u,y > ¥, V(x,y)e AxB,
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Therefore, L € & (E,F) defined by (1) and ypi= <y, are con-

venient., The proof of the conversion is trivial.

In the next separation theorems we need only assump-
tions about the intrinsic core of certain sets. Therefore,

we prove two assertions about such sets.

Lemma 1: Let ASE and "A+#, let L € %(E,F) and ye F.

If
(4) Lix)¢y, YxeA,
then
I xeA: L(x)éy°<=> {xeE| L(x) = y°§ A A = p.
Proof: Let x,E A and L(xl)é Yo We assume that there
exists an

x e {xeE|L(x) =y }n i,

1

Because of X, € 1A, for x€ “A there exists an € > 0 such that

x°+r(x-—xo)eA Vrel-e,el.

This holds true in particular for x = X1, X € AN {xeE|L(x)=
=y,% .

Therefore, from (4) we obtain
L(xy + r(x; = x,)) = L(x,) + r [ L(xy) - L(x,)] & y,
Vrel-¢,e].

Since the relation & is antisymmetric and L(xo) = Yo We
have

L(x)) = L(x,) = y,.

This is a contradiction.

The proof of the conversion of the statement is trivial,
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lemma 2: Let ASE and *A#%0. If there exist a ueE¥,

u+0, and an « € R such that
{u,x > & o VxeA,

then for the operator L defined by (1) and

V3= XY Y6 F,_,, holds true
Ixed: {uxd<x¢=> L(x)éy, Vxe’A,

Proof: Let x;e A and (u,x1> < « . Then for x,€ AS 1

there exists an € > O such that
x, + r(x) -x )eA Vrel-¢e,e] .
Hence,

Cupx Y+ rduyxy x> =c+r[{ux) - (uxPlex
for allr of [ -¢,€]. It follows
{uyxy? = {uyx ) = <

but this is a contradiction and, therefore, we have

i

{u,x><oc Vxe™A,

From (1) and y,:= « y, y,€ F,, our statement follows.

It is easy to see that the conversion holds true.
In connection with these assertions we obtain theorems

which are sharper than those in [81].

Theorem 3: ILet A and B be two non-empty convex subsete
of E anl 1B#@. When the deficiency of B is finite, there
exist an L ¢ £(E,F) and a y e F u (-F,) with
(5) L(x)€ y, £ L(y) V(x,y)e AxB
and
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(6) L(x) £y, for at least one x€A
or
M ¥14Ly)  Vyels
if and only if Anip = g,
Proof: 1., Let An'B = §. Then there exist a ueE*,
u%0, and an « € R such that
{u,xdsexc & (u,y? V(x,y)eAxB
and
{u,x ) < ¢ for at least one xeA
or
{u,y > > & for at least one x€B
(see [31,011]1),
For y ¢ F,, we get

{u,x) yoexy, &<u,y >y, V(x,y)e AxB

(u,x ) Yo £xy, for at least one x€A

or

{u,y > YoZ %y, for at least one y&B.

Therefore, by Lemma 2, L e &£(E,F) defined by (1) and y,:=

= y, are convenient.

2. The assumption An *B4 # in connection with (5),(6)

and (7) leads to a contradiction.

As a generalization of Satz 4 in [81] we have
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Theorem 4: Let A and B be two convex subsets of E
_with iA*ﬂ and iB-i-ﬂ. There exist an L€ & (E,F) and a
yi€ F U(-F,) with
L(x)€ y, € L(y) V(x,y)e A<B
and
L(x)& yq Vxela
or
Ly)2y, Yxe'B
if am only if ‘AniB = 2.
The proof of this theorem is analogous to that of Theo-

rem 3 (with respect to [31,[9] and [111).

As a general geometric version of the Hehn-Banach theo-
rem we obtain

Theorem 5: Let A be a convex subset of E with “A# @,

and let M be a linear manifold in E.

There exist an L e &(E,F) and a y,e F u (-F,) such that

Lix)&y, = L(y) V(x,y)e AxM,
L(x) £y, Vxeéra

if and only if MnlA = g,
Proof: Since M = Iy = iM, from [1] and our assumptions

it follows that there exist a ueE*, u%0, and an

< €R
such that
(u,xY£x = {uy? Y (x,y) e AxM,
{u,x? < « VxeiA.

From this we get in connection with ¥,€ F,, our statement in

the same way as in the other proofs.
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The assertion of this theorem is also proved in [ 8], Folge-
rung 11, however, different methods have been used. Moreover,
here the assumption that F is archimedean, can be dropped.
In (2] a new proof of this statement is also given.

We have an analogous result for M¢c UA in

Theorem 6: ILet AS E and MS "A convex sets with *A+ @
and *M# @. Then there exist an L € £ (E,F) and a yi€ B, U
U (~F,) such that

Lx)&yy = L(y) Vix,y)e Ax M,
L(x)éyl VxeiA.

For the proof of this statement, a theorem given in [11]
may be used.

A sharper result than in [8], Folgerung 9, is contained
in the following theorem in which the strong separation is

generalized.

Theorem 7: Let A be a convex subset of E with J'A#ﬂ,
and let x € E\PA, Then there exist an L ¢ &£ (E,F) and y,y,€
€F,_or Y1s¥o € -F, such that

Lx)ey ¢ yzéL(xo) ¥ xeA.

Proof: By our assumptions there exist a ue€E* , u+0,

an oo € Rand an € > O such that
(u,x>éoc-e<ccé<u,xo> YxeA
(ef. [11). For yoe F,, it follows
Cu,x ) y&lax-ely € o0 yo& Cuyx Y vy, YV xeA.
Therefore ¥y1:= (x=-€)y,, ¥p:= Xy, and L e £(E,F) defined

by (1) are convenient.

- 201 -



3.2, Separation by Means of Continuous Linear Operators.

For some theorems of the last section, analogons theorems
with continuous operators separating certain sets, can be
proved. In this section let E be a topological vector space
and let F be a normal topological partially ordered vector
space with F__+4,

In the beginning of Section 3 it was said in which way
the continuity of an operator defined in (1) follows. There~-
fore, the proofs can be finished if there exists a continuous
linear functional ue E°, u+0, which has certain separation
properties,

As a generalization of a theorem proved in [14] by means

of other methods we have
Theorem 1°: let A and B be two non-empty convex subsets of

E and int B#$ @. There exist an Le:ﬂ'(E,l") and a y,¢F v
v (-F,) with

L(x) &y, € L(y) Y (x,y) e AxB,
¥y € L(y) Yyeint B
if and only if Anint B = 4,
The proof goes in the same way as for Theorem 1.
The existence of a ue E°, u%0, and an o« € R having the de-
manded properties follow from [10J.
Analogously to Theorem 2 we get

Theorem 2°: Let A and B be two non-empty convex subsets
of E with int A = A and int B = B,
There exist an L € £(E,F) and a yy€ F U (-F,) with

L(x)& y, £ L(y) V(x,y)e AxB
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if and only if AnB = g,

The proof, using a result from [10], is trivial.

As a general geometric version of the Hahn-Banach
theorem including an assertion for a continuous linear ope=~

rator we have

Thegrem 5°: Let A be a convex subset of E with int A%
%@, and let M be a linear manifold in E.
There exist an LeX’(E,F) and a y,e F U(-F,) such that

L(x)& ¥y = L(y) Y (x,y) e Ax M,
L(x)&y, xeint A
if and only if Mnint A = @,
A result from [10] can be used for the proof.
Then it is easy to see
¥1:= ¥, with y ¢ F,, and L& £'(E,F) defined in (1)
are convenient.
If E is a locally convex topological vector space, then

strong separation theorems for compact subsets can be pro-

ved, too.

Theorem 8: Let A and B be closed convex subsets of a
locally convex topological vector space E, and let A be com-
pact. Then there exist an L e £'(E,F) and y,,yp6 F, or y;,
yoe -F ,+ such that

L(x)éyléyzﬁL(y) V(x,y)e AxB.

Proof: By our assumptions there exist & ueE’, u%0,

an o ¢ R and an € > O such that

{u,xYe ot - e < e & {u,y?> V(x,y)eAxB

Y »
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(cf.[6], section V.2). For y € F,, in connection with (1),
yy:= (X =€)y, and y,:= < y, the statement follows.

As corollaries from Theorem 8 we find the following asser-

tions.

1. If AcCE is a closed convex set and xo¢ A, then there ex-

ist an L e £'(E,F) and y,,y,¢ F, or y;,ype- F, such that

Lx)&y £y, = Lixy) YVxeA.

2, For any x,,X,€ E, X % X,, there exists an Le&'(E,F) such
that

L(xl)é L(xz) and L(xl)*L(xz).

Remarks:
1. The assumptions for Theorem 8 can be weakened e.g. in the
following way:

Let A and B be closed convex subsets of a locally convex
topological vector space E, let A be a continuous subset and
one of the sets A, B locally compact.

Then the assertion of Theorem 8 holds true,
For a proof of this statement, a result given in [9], Theorem
2.9, can be used.

2., Using in (1) Vo€ FJ;‘, it is possible to derive further se-
paration theorems for ;)perators in accordance with the usual
strong separation,
For instance, if F is finite-dimensional and Fi‘# @, then Theo-
rem 7 holds true in the following sharper form:

' Let A be a convex subset of E with A+ @ and let x, €

e E\PA. Then there exist an L e $(E,F) and y1,¥p€ F, or
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¥1+¥, € -F, such that L(x)&y <y, &Lx,) VxeA.
To this y,<Y¥; is defined by y, - yp€ Fi.

3. It is a consequence from our proof principle that every

classical separation theorem leads to an analogous separation

theorem for linear operators.

4. It is easy to see that some separation theorems proved

in this paper can be generalized on finite families of con-
vex sets (cf. [15]).

5. Analytic versions of the Hahn-Banach theorem and some

equivalent assertions were considered in [12].
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