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LIOUVILLE FORMULA FOR SYSTEMS OF LINEAR HOMOGENEOUS ITO
STOCHASTIC DIFFERENTIAL EQUATIONS

Ivo VRKOE, Praha

Abstract: Let X(t) be the fundamental matrix solution
of It® equation (1) and D(T) = det X(T). The process D(t)
is a solution of (2) and hence given by (6)., It is shown
that X(t) is regular and a formula for solutions of nonho-
mogeneous linear It8 equations is derived.
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The general system of linear homogeneous It3 stochastic

differential equations can be written in the vector form

(1) dx = A(t)xdt + jéi B(j)(t)xdwja

where x is an n-dimensional vector, A(t), B(j%t) J=1,e00
«+s,k, are matrix functions of the type nxn defined on
{0,0), wj(t) are stochastically independent Wiener proces-
ses,

Assume that [A(t) I, | B{9)(4) Il are measurable end
locally bounded on {0,c0)., A matrix function X(t) of the
type nx n defined on <t ,®), t =20 is called a fundamen-

tal matrix solution of (1) if the columns of X(t) are solu-
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tions of (1) on (t, ,®) and X(t,) is the unit matrix. The
existence and unicity of the solutions of (1) is proved in

[1], €2]. Denote D(t) = det X(t).

Theorem 1. The process D(t) is a solution of

- 1 (J) () ey -
(2) dp = [tr A(t) + 3 p,zq,j(Bpp (t)qu (t)

a3 4 ymtd) () .
Boa (t)qu (t))1 D(t)at + D(t) SJ‘ tr B (t)aw; .

Proof. Let xia)(t) be the i-th element of the j-th co-
lumn of X(t). The determinant D(t) can be written by the well-

known formula

. o Gg) (3p)
() D) = 5B e yyedndn T e (),

where the indices jl,...,jn assume the values of all permuta-
tions of 1,...,n, e(jl,...,jn) =1or -1 if jy,...,J, is an
even or an odd permutation, respectively. Applying the It®

formula to (3) we obtain

n (Jl (j.. 4)
= .S : p-1
(4) ap = jl"lj e‘(al"'°")n [p% x oo p-l
(3.) +1 (jn) 1 (Jl) (Jp_l)
. dxp P p+§ e lﬁ + '2- pz’q xl XK xp-l
(J ) (Jpq) G, 1) €3.) (G,4q) (3,)
p+l -] q q+1l n
o dxp p+1 vee xq % dxq xq+1 eee Xp .

Due to (1) we obtain
() (§.) (J) 3.} (J) (J )
P Q- P
Xp 4%y %‘(Sk‘ Box Xk © % Bgg Xp o )at

and equation (4) can be rewritten as

(5) ap= = aet P + 1 = aer RO DIgy,
p PyQyJd

- 142 -



where Q‘P) are matrices of the type nxn defined by

Qég) = x]-(_j) if i%p and Qég) = dx;'j),

R(p,q,a) are matrices of the type nxn defined by

E{‘&O;q'j) = xl(J.V) if u#%p and u#gq,

’
( i) = () (v) o( i) - (3) (v)
Rp?x’rq’J - Sk Ble: X s Rq?w'rq'a = 2]‘( Bqﬂ X"

Equation (5) can be easily transformed (by using well-known

properties of determinants) into

- (3)
dp D(t)(z; Ajpdt + EJ_ Bpp dwj) +

1 (g3 _ pld)g(d)
+ Vi p,zq‘,j(Bpp qu qu qu )D(t)dt

which is the same equation as (2).

Conclusion 1. Let the assumptions of Theorem 1 be ful-
filled. If X(t) is the fundamental matrix solution of (1),

X(to) = I (I is the unit matrix) then

t
(6) det X(t) = D(t) = exp-{j tr A(z )de -
tO
t . t .
-3 2 [ wePe)niac = J, 8 (eanyce .
J o o]

The formula for D(t) follows immediately from (2) and the

It8 formula.

Conclusion 2., Let the assumptions of Theorem 1 be ful-

filled. If X(t) is the fundamental matrix solution of (1),
X(to) = I then the probability that X(t) is regulx for all

ted t,,00) is equal to one.
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This conclusion follows directly from formula (6). Con-
clusion 2 implies that the inverse matrix X-l(t) exists al-

most everywhere.

Conclusion 3. Let the assumptions of Theorem 1 be ful-
filled. If X(t) is the fundemental matrix solution of (1),
X(ty) = I then to every T>t, and o Z 1 there exists ¢Z0
such that EN X1 (1) 1% % ¢ for t €<0,T ) .

Proof. If X"1(t) exists then x;]',z. = (-1)¥*% gey xK),
L]
/det X where Xu"k) is the submatrix of X corresponding to the

element xék). Since det X(B'k) =Ze (jl”"’jl-l’jﬂ*‘l""

(3g) . . .
...,Jn) 'SI'I Xg where 31""'31-1’3£+1""’Jn are permuta-

tions of 1,2,...,k - 1,k + 1,...,n we can derive an estimate

(1) & |det il I

iy & (m-10)¥

(Jg)

: -y . 1T 8 1 «©
*d1reedgoyrdp1redn E [ s¢2 *s det X J £
(tn - = ‘

J1r0°dp-10dg4100%dn

Jgxn
_nn E‘xs e‘ e -1
84l |det x|*n

where E is the mathematical expectation. It is proved in [2]
that to every T>£o, & Z1 there exists CZ 0 such that
Elx(t)I*PgcC for t¢ {t,,T) where x(t) is a solution of

(1) fulfilling l x(t ) & 1. Using (6) we obtain that also

E —t—r &C, for t e <{0,T > . Inequality (7) implies
|det x|xn
-1 1
(2,k) o= =
E \d__et__X_’__l‘" £ (n-1)1)®cth C? and the statement of
det X
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Conclusion 3 easily follows.

Theorem 2. Let A(t), B{d)(t), wi(t), § = 1,...,k ful-
£il the conditions of Theorem 1 and let < (t), ,3j(t), J =
=1,...,k be n-dimensional vector functions defined on
<0,00) such that Hec(t)ll , Il ﬁj(t) Il 2 are locally integ-
rable. Dermote by X(t) the fundamental matrix solution of (1),

X(t,) = I. If x, is a nonstochastic vector then the process

L
x(t) = X(t)x, + X(t)jt e Nex(z) -
(o]

(3 v
zjs (%) pi(z)de + X(t)fto X () EJ: pj(Edaws(T)

is the solution of the nonhomogeneous It8 equation
k (i) k
dx = A(t)xdt + = B9 (t)xdw; + c(t)dt + = B.(t)dw.

fulfilling x(to) = Xge

Proof. With respect to Conclusion 2 the process x(z2)
exists and the integrals converge. Denote Jl(t) = X(t)xo,

t .
I,(0) = x) [ x N e () - = BWY(z) gi(v)ar ana
to J J

t
J3(t) = X(t) Ito x(e) Jz (% )aw;( ). The process J)(t)

is evidently the solution of (1) fulfilling J,(t,) = x

o
Using the Itd formula we obtain that J2(t) is the solution

of

= (J) (J)
aJ, = AJ, at + ":__'.BJJadwj+ (ec - %BJ Bjlat

fulfilling J2(t°) = 0 and the process J3(t) is the solution
of
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= () (J)
ady AJ3dt+?B Jy dwy + ZJ_:B B at + zj{sja-j

fulfilling J3(to) = 0,

Remark. The theorems and the conclusions are valid
even if A(t), B(t), «<(t), pj(t) are nonanticipative stoch-
astic processes fulfilling the above conditions with proba-

bility 1.
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