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CONVEX COMBINATIONS OF COMMUTING AFFINE OPERATORS

Ryotaro SATO, Sakado

Abstract: ILet E be a complete Hausdorff locally con-
vex topological vector space and let R and S be two commu-
ting mean stable affine operators on E such that the trans-

formations R® and Sn, nZ1, are equicontinuous on E. Under
these circumstances, convex combinations of R and S are
shown to be mean stable. This is a generalization of a re-
sult due to Sine, who examined linear contraction operators
on a Banach space.
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1. Introduction and the theorem. Let E be a complete
Hausdorff locally convex (real or complex) topological vec-

tor space (t.v.s) and R an affine operator on E. Thus
R(ax + (1-a)y) = aR(x) + (1-a)R(y)

for all O<ac<l and all x and y in E. We call R mean stable

if for every xe B the ergodic averages
n-1 i
(1/n) = R™(x)
i=o

converge to a point of E invariant under R. In [ 6] Sine sho-
wed, in essence, that a convex combination of two commuting

mean stable linear contraction operators on a Banach space

- 45 -



is mean stable. Although his argument given there can easi-
1y be modified to obtain the same result provided that the
hypothesis of being contraction operators is replaced by
the hypothesis of being power-bounded operators, it would
seem worth showing that the same result holds under a more
general setting. This is the starting point of the present

work.
Our result ia' as follows.

Theorem. let R and S be two commuting mean stable af-

fine operators on a complete Hausdorff locally convex (real
or complex) t.v.s. E such that the transformations R and Sn,

n21, are equicontinuous on E, Then for any O<a<1l the af-

fine operator T = aR + (1-a)S is mean stable, and further for
every xe€ E, T(x) = x if and only if R(x) = S(x) = x.

It is interesting to note that in a recent congress of
the Mathematical Society of Japan I learned, without proof,
from Mr. K. Anzai of Keio University that he also obtained a

similar result for commuting linear operators.

2. Proof of the theorem. Putting r = R(0) and s = S(0),

it is easily seen that the two mappings A and B defined by
A(x) = R(x) - r and B(x) = S(x) - s (xe E)

are (real) linear operators on E. Let pe E be such that
R(p) = p. Then RS"(p) = SR(p) = S™(p) for all n20, and thus
if we let

n-1 .
q = lin (1/n) 3 s*(p),
n i1=0
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then R(q) = S(q) = q. Therefore for all xe E we have

R(x) = A(x-q) + A(q) + r = A(x-q) + q,

S(x) = B(x-q) + q,

and

T(x) = C(x-q) + q, where C = aA +(1-a)B.

From this it follows directly that A and B are mean
stable (real) linear operators on E, that A" and Bn, nx1,
are equicontinuous on E, and that AB = BA, It is now enough

to show that C is mean stable and that for every xe E, C(x)=

x if and only if A(x) = B(x) = x.
First let us show that C(x) = x implies A(x) = B(x) = -

x. (The converse implication is obvious.) To do this, let

U be any convex neighborhood of O€ E, and choose a neighbor-
hood V of O€ E 80 that

A"B*(¥)c U for all m, n>0.
Denote by W the convex hull of U 4 A"B(V) : m,n= 0% . Since
U is convex, it follows that
wcu,
and furthermore we have
A(Wcw and B(W)cW.
Let N+l denote the Minkowski functional of Wand N ={z:

:lzl=0%, Since lzll < 1 implies HA(z)Hl < 1 and
[B(z) I < 1, if we set

A’(z4N) = A(z) + N,

B’(z+N) = B(z) + N,
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and

C’(z+N) = C(z) + N,

then A°, B” and C’ are (real) linear operators on the quo-

tient (normed) space E/N such that IA°ll £ 1, B’ £ 1

and C’= aA’+ (1-a)B’, Clearly C(x) = x implies C’(x+N) =

= x+N and hence, by Lemma 1 of Falkowitz [ 2], we have
A'(x+N) = B (x+N) = x + N,

Therefore

A(x) - xeNcWcU and B(x) - xe U,
This shows that A(x) = B(x) = x.

For a continuous (real) linear operator Q on E, we
shall define F(Q) = {xeB; Q(x) = x} and F*(Q¥) =
={x*e B*: Q¥ (x*) = x*3} , where E* denotes the topo-
loéical dual of E and Q¥ denotes the adjoint of Q. (We may
and will assume, without loss of generality, in the proof

that E is a real t.v.s.)

To prove that C is mean stable, we use the results of
the author [4] and understand that it is sufficient to show
that F(C) separates points of F* (C* ), N

To do this, let x* ¢ F* (C*) and x* 4 0, and choose a
neighborhood U of O« E so that

I<x,x*>| £ 1 for all x€U,
Further choose another neighborhood V of O e X so that

A"B®(V)c U for all m, n20.



Write

v= U{A""(V): n, n20}
and

K=4z¥e¢ E*: |<{(x, 2¥>| £ 1 for all xevw}.
It is clear that
x*e K, A¥ (K)cK and B* (K)cK,
and by the Banach-Alaoglu theorem (cf. (3], Theorem 3.15),
K is a weak¥ -compact convex subset of B* ., Let
K(C¥) = KnFX¥(C*),

and let y* e K(C* ) be any extreme point of K(C* ). We then
have, a8 in Sine [ 61, that

CHA¥ (y¥) = A* C¥ (y¥) = A* (y) and

ck Bk (yt ) = B* (,#);
hence A* (y*) = B¥ (y*) = y¥ , because y¥ = C¥ (y¥) =

= aA¥* (y¥ ) + (1-a)B* (y*¥ ), This and the Krein-Milman theo-
rem (cf. [31, Theorem 3.21) imply that

K(C¥)cKNnF* (A¥ )n FX*(B¥);
in particular, x* € FX(A¥ )AF¥(B*), Since A is mean
stable if and only if F(A) separates points of F¥ (A*), by

the results of [4], then there exists a point xe F(A) satis-

fying { x,x* > % O. Since AB = BA implies B"(x)e F(A) for
all n20, if we let

n-1 i
y = lim (1/n) = B (x),
n i=o
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then y € F(A)n F(B)c F(C), and further ( y,x*>=<{x,x*)>= 0,
This establishes the theorem.

3. Remarks. Throughout this section, R will be an af-
fine operator on a complete Hausdorff locally convex (real)
t.v.s. E such that the transformations lf‘, nz1l, are equicon-

tinuous on E. Define
F ={x6E: R(x) = x}
and

F¥ = {x*¢E* : (R(x),x*) =<{x,x*) for all xcE?.

It is easily seen (cf. the preceding section) that if Fa4 ¢
then F is a closed affine subspace of E, i.e., F has the form
F=p + Dwhere pe E ard D is a closed linear subspace of E,

and that F* is a weak¥ -closed linear subspace of E¥,

(1) Suppose F& ¢ . Then R is mean stable if and on~
ly if any x*e F¥*, with x*4$ 0, is not constant on F,
To see this, fix any point pe&F. As in the preceding

section, we have

R(x) = A(x=-p) + p (xe E)

where A is a (real) linear operator on E. It follows that R
is mean stable if and only if A is mean stable. By [4], the
latter condition is equivalent to the fact that F(A) separa-
tes points of F¥ (A* ), Since F = p + F(A) and F¥ = F¥ (A¥)

by an easy observation, this completes the proof of (1).

2) Suppose xeE and the set {R(x): nz0¢ is relati-
vely weakly compact in E. Then F #w ¢



To see this, let K denote the closed convex hull of
the set {R*(x): n=03%. By Krein’s theorem (¢f. [51, Theo-
rem IV.11.4), K is again weakly compact. Since R is weakly
continuous and R(K)c K, it follows from the Markov-Kakuta-
ni fixed point theorem (cf. [11, Theorem V.10.6) that there
exists a point p in KcE such that R(p) = p. This establish-
es (2).
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