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SEMIGROUPS FOR WHICH EVERY TOTALLY IRREDUCIBLE S~SYSTEM IS
INJECTIVE
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Abstract: We characterize those semigroups for which
every totally irreducible S-system is injective, Also obtain-

ed are homological characterizations of semilattices of
groups and commutative regular semigroups.
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0. Introduction. In recent years there have been many
investigations into homological properties of semigroups and
S-systems. Many of the questions asked are analogous to tho-
se from ring and R-module theory. For example, Fountain (3],
extending the work of Feller and Gantos [ 2], characterized
those monoids S for which every S-system is injective. This
corresponded to the well-known theorem that a ring R is se-
misimple Artinian if and only if every R-module is injecti-
ve, The fact that another equivalent condition, namely that
every cyclic R-module is injective, does not carry over to
semigroups was shown by Johnson and McMorris in [51.

The present note is concerned with characterizing tho-
se semigroups for which every totally irreducible S-system

is injective, We obtain an analogous theorem to that of
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Michler and Villamayor [ 7]1. As a consequence we also obtain
the analogue of a theorem of Kaplansky characterizing com-
mutative regular rings. In addition we give a new homologi-
cal characterization of semilattices of groupa which can
then be added to the list as given by Lajos [ 61,

In this paper, S is a monoid with zero.

A unital right S-system Mg with zero is a set M with
a multiplication M»x S—> M given by (m,s)+—> ms such that
n(s8,) = (ms;)s, and satisfying m-1 = m for all me M and
having a distinguished element © € M satisfying ©s = ©
for all se S, We will denote this element, as well as the
zero of S by O.

An S-system Mg is injective if for every S-monomorph-
ism f: AS-—o BS and S-homomorphism g: As——a MS there is an
S-homomorphism h: Bs——+ MS satisfying he f = g,

An S-subsystem Ng of Mg is essential in Mg if every S-
congruence on M whose restriction to N is the identity, is
itself the identity on M. Note that if Ng is essential in
Mg then Nsn Kg# O for all non-zero S-subsystems KS of Mg.

Berthiaume [1] has shown that each S-system Mg has a
unique (up to isomorphism over MS) essential extension MS
called the injective hull of Mg.

For a ring R with identity, Michler and Villamayor L[ 7]
have shown that the following statements are equivalent:
(1) Every proper right ideal is an intersection of maxi-
mal right ideals; (2) Every simple right R-module is in-

jective.

A right S-system Hs is totally irreducible if the
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only right S-congruences are the universal congruence )y
and the identity congruence iM, and MS* O. Note that if lls
is totally irreducible then Mg has no proper S-subsystems.
Also, since S has an identity, every congruence is modular
80 Theorem 6.2 of Hoehnke [4] reads that Mg is totally irre-
ducible if and only if M"=’S/(a, where « 1is a maximal right.
congruence on S,

Finally, if f: Ag—> Bq is an S-homomorphism, the
kernel congruence, ker f, on Ag is given by
ker £ = {(x,y) ] £(x) = £(y)} . Clearly ker f is an S-congru-

ence on AS.

1. Monoids whose totally irreducible S-systems are in-
jective
Given a congruence @ on S, let I(S'o ) denote the O-class
of P
Up) =fxesS|(x,0)ep}

l.1. Theorem: The following conditions are equivalent:
(1) For every proper congruence @ on S, I(p) =
=6€\c I(& ) where C is the family of all maximal right con-
gruences on S which contain P .
(2) Every totally irreducible S-system is injective.
Proof: If 1 = 0, there is nothing to prove, so we shall
assume that 1# 0,
(1) => (2): Let M be a totally irreducible S-system,
let O xe i where M is the injective hull of M, and define
A :S— i by A(s) = xs. Then ker A 1is a proper right con-
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gruence on S, let {@&, |x ¢ Aj be the family of maximal
right congruences on S which contain ker A . Let M, =

= 8/€, and define ( :xS —’«,FA M, by @ (xs) = ([s] )
where [8s]  is the equivalence class of s in M, . Consi-
der p o«  where p :epTJA M, — M_ is the projection
mapping. Suppose that p L is not one-to-one for all

« €A . Since M is essential in fl and is totally irredu-
cible, (O)%M = MNxSES xS and 8o ker (p e w )|y = @y for
all <« ¢ A . Thus if xs¢ MN xS, w(xs) = 0 and 8o 8¢ I( 6 )
for a1l x € A . Thus s ‘a?/\ I(&, ) = I(ker (A)) and so
A (s) = xs = 0. Consequently M = xSNM = (0), a contradic~
tion. Thus there exists an « € A such that p, o « is one-
to-one. Then xS « M, and so xS is totally irreducible. Hen-
ce M = xSNM = xS and xe M, therefore M = fl.

(2) => (1): Let p be a proper right congruence on S
and let C be the family of all maximal right congruences on
S which contain @ . Let xeS\ I(Sb), and @, be a right con-
gruence on S meximal with respect to © € @, and (x,0) €@ -
Let JES be the right ideal of S which is a union of @,
classes such that J/% = [x] S where [x] is the @, class

of x. Then J/;o is totally irreducible for if 6 is a con-
o

gruence on J, 6 2 ®, , then » = 6ve,| gy is @ congru-
ence on S properly containing @o « Thus (x,0) ¢ v and so

& = “’J/Soo . Thus J/?o is totally irreducible; and so

J/ is injective. Then we have the diagram
(-]
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S
%o

NG
o, T Uk,

where o is the inclusion mapping. Let 6 = {(a,b)e Sx S|
| $Lal= [ bl, then 6 2 @, is a congruence on S. If
8+ @, , then (x,0)e6 and [x]1=¢[x]1=[01 end
(x,0) € ®, , a contradiction. Thus 6 = P, and ker ¢ =

=i . Therefore, S -1 and S/, is total
S/¢O ¥ ! /goc Po v

0,
irreducible, and @ is a maximal congruence on S contain-
ing @ . Hence x¢I( @, ) so x ¢ /) I(6, ). Thus
FARICHBIES ({PN

Remark: Using methods similar to those above, we can
prove that if each proper congruence @ on S is the inter-
section of the family of all maximal congruences containing
@ , then every totally irreducible S-system is injective.
However the converse is false as seen by considering a group
with zero.

The next theorem is the semigroup analogue of Kaplan-
sky ‘s result which states that a commutative ring R with
identity is regular if and only if every simple R-module is

injective.

1.2, Theorem: Let S be a commutative monoid. S is re-
gular if and only if each totally irreducible S-system is
injective.

Proof: Suppose each totally irreducible S-system is
injective. Let ae s\a’s and « = (aSx aZS)uiS. Let @ be
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a maximal congruence containing o . If (a,0) & @ , then
lals = S/$° since S/P is totally irreducible. Thus [1] =
=[al s = [as] for some seS, and so (1,a8)e @ . Since @
is a congruence (a,azs)e;o , but then (a,0)e@ since
(aze,o) € o« S @, acontradiction. Hence, (a,0) € ® for eve-

ry maximal congruence @ 2 & 80

a ‘So"?c I(go) = I(ec) = aZS where

C=4p2« | @ is a maximal right congruence on S }. Thus

Y3 azs for all a€S so S is regular.

Conversely, let IIS be totally irreducible. Then there
is a maximal right congruence @ on S with M& S/@ . A theo-
rem of Oehmke [9] says that S/ is either a group or the
two element semilattice., Schein [11] defines an order a<b
on M if ae bE where E is the set of idempotents of S. More-
over, BEM is compatible if for every be B there is an epe E
with b ey, =band be, =c e, for all ceB. A face of BENM is
an element ae M with aZ b for all be B and as = at whenever
Bs = Bt for s, teS. Schein [11] proved that M is injective
if and only if every compatible subset of M has a face. Clear-
ly every group and the two element semilattice are injective

by Schein’s result and thus M S/@ is injective.

2, A generalization. In the theory of rings with iden-
tity, an R-module M is injective if and only if each R~homo-
morphism from a right ideal of R to M has an extension to all
of R, These two concepts do not coincide in the theory of se-

migroups as shown by Berthiaume [1].
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Definition: An S-system Mg is weakly injective if each
S-ho_momorphism £:A—> M from a right ideal of S to M has an
extension £:8 —> M,

An S-system "S is p-injective if each S-homomorphism
f:aS—» S from a principal right ideal of S to M has an ex-
tension £:5—> M.

Note that since S has an identity 1, if £(1) = m, then
£(s) = ms and f is given by le £t multiplication by m. In this
section we characterize monoids S each of whose cyclic S-sy-

stems is p-injective and use this to generalize Theorem 1.2,

2.1, Theorem (Ming [8]): For a monoid S, the following
are equivalent:

(1) S is regular,

(2) Every S-syatem is p-injective.

(3) Every cyclic S-system is p-injective,

The proof found in [8] carries over directly.

2.2, Theorem: S is regular and SaSaS for all ae¢ S if
and only if every totally irreducible S-system is p-injecti-
ve and every right ideal is two-sided.

Proof: If S is regular, then every S-system is p-injec-
tive by Theorem 2.1, Moreover, if J is a right ideal of S and
aeJ, then SaSaS&J and J is two-sided.

Conversely, if every right ideal is two-sided, then aS
is & right ideal, s € aS and so SaS aS. To see that S is re-
gular, let be S. If b is not regular, then (1,b) ¢ x=
= (bSxbS)u ig for otherwise (1,b) ¢ « implies that (1,0) e
€x and « = wg. Thus 1 = bs for some s€S and b = bgb,
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Likewise if A :S—> bS is given by A (8) = bs, then (1,b) &
¢ ker A for otherwise (1,b)e ker A implies b = b2 and so b
is regular. Let @ be a congruence maximal with respect to

@ 2« uUkerdA and 1,p)¢ e .If Sb$ r , (1,b) e 3 but
(b,0)ex SE S 9 s0 g = @g, thus @ is a maximal right
congruence, and so S/@ is totally irreducible. Let 1y :bS—>
— S/So be defined by 1y (bs) = (sl , the equivalence class
of s determined by @ - Since Sﬁp is p-injective, there is
some ceS with % (bt) =[c] bt for all teS. Thus [c]l b =

= y(b) = y(bs1) =[1] or (L,cb) e @ . Now cbe SbEDS s0

(cb,0) € x & and so (1,0)e @ . Then @E2@g, a contra-

diction.

Remark: The conditions of Theorem 2.2 are equivalent to

the fact that every N-class of S is a right group (Petrich
(101, p. 118).

2.3. Corollary: S is a semilattice of groups if and on-
ly if every totally irreducible S-system is p-injective and

every one sided ideal is two sided.

2.4, Corollary: Let S be commutative, then S is regular
if and only if every totally irreducible S-system is injecti-

ve.

In a future note, we plan to investigate those semigroups

for which every cyclic S-system is injective,
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