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COMMENTATIONES MATHEMATICAfi UNIVERSITATIS CAROLINA-S 

1 8 , 4 (1977 ) 

ON THE EXISTENCE OP FINITE GENERATORS FOR INVERTIBLB 

MEASURE-PRESERVING TRANSFORMATIONS 

Karel WINKEIBAUER, Praha 

Abstract: A measure-theoretical version of topologi­
cal entropy is defined as a new invariant for an invertib-
le measure-preserving transformation of a finite measure 
space to show that the existence of finite generators is 
guaranteed for such a transformation if and only if the nu­
merical value of the invariant is finite and the transfor­
mation may be decomposed into aperiodic and purely atomic 
parts, the number of atoms being asymptotically finite. 

Keywords: Invertible measure-preserving transforma­
tion, rmite^lgenerator, asymptotic rate. 

AMS: Primary 28A65, Ref. Z.: 7.977 

Secondary 94A15 8.72 

-•• Introduction. Throughout this paper {SI, J' , ^v) means 

a finite measure space with the measure normed, and T is an 

invertible measure-preserving transformation of the space, 

which will be referred to as its automorphism. The additi­

ve group of integers is denoted by If hence (T ,i€ I) means 

the cyclic group of automorphisms associated with the trans­

formation T. 

We shall denote by Q, * ^ (y) the compile te lattice 

(with respect to the relation of inclusion) of sub- 6T-al­

gebras of $ ; for a class of sets A c 'cf the notation 
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0 A means the element in ^ that is generated by A . 

The lattice operations in Q will be designated in a custo­

mary way; we shall set 

3T * iVl T±3i *°r 3 £ ̂  * 
this is done in accordance with the notation used in Par­

ry *s work T1], and we shall make use both of the notations 

and of the terminology given in the work quoted without 

further reference. 

Especially, we shall employ the mod 0 nomenclature in 

the spirit of Rohlin's fundamental paper [2], writing mod ^ , 

or even a«s, ((**), whenever more convenient for the sake of 

clarity. Here a partition is taken as a class of sets, and 

partitions studied in 121 are referred to as Rohlin measur­

able • 

To define the basic notion of this paper, a modified 

version of topological entropy, we restrict ourselves to 

the class Z = Z(& ) of finite measurable partitions, which 

forms a lattice with respect to the relation ttj 6 ? ( C 

is a refinement of ̂  )$ the lattice Z is taken as a sublat-

tiee of ^. , embedded into -̂ by the injective map £ — > £ = 

• $ ^ . Recall from CI J that ^ T * (tf ^ ) T ; in what fol­

lows we shall set 

, $B " S? • So ̂  *°* * e Z' 
Given 0< e < 1, we define, for $ c Zt 

« « , p « L f ( e ,<£ ) * min{card (A ) : 

s A c <£ , S / a ( c ) > i - e ? , 
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H(Tf* ) » H^(Tfe ) « sup, Ui8upilogL(e,(n), 

H(T) » H^(T) » sup H(Tf J ).$ 

here the symbol card means the cardinality, which is, in 

the case considered, simply the number of elements. We 

shall call H(T) the asymptotic rate of automorphism T, re­

ferring to H(T,£ ) as the asymptotic rate of the partition 

t with respect to T. 

Note. The asymptotic rate was studied by the author 

first in 1962 for the case of two-sided shifts; the quan­

tity L( e , £ ) was introduced in 1959 for investigating the 

transmission of ergodic information sources over non^ergo-

dic communication channels (cf. L 31 ,C41 ,C 5J). The results 

concerning the asymptotic rate were extended by 5t. Sujan 

to the case of non-continuous measures (i.e. only additive 

measures) in a paper to appear as a supplement to the jour­

nal Kybernetika this year. 

Let us recall that (:T, (t->) and the space considered 

are said to be count ably generated if there is a countable 

class A c $ such that &A » iT mod 0; (S^,^) is (to­

gether with the space) said to have a finite generator with 

respect to T if there is $ e Z such that tm » & mod 0; 

then £ is called a generator for T. 

Since we consider neither Lebesgue measure spaces nor 

complete measure spaces only, we must make use of a more 

general concept of aperiodicity , as given, e.g., in t61f 

Sec. 2. Let us make the convention that, anywhere in the 

sequel, by N is denoted the set of positive integers. An 
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automorphism T ia called aperiodic if C-J-0 mod 0 (Ce&)f 

ncN ==-> there is Dc C (De3*)f D + T~
n D mod 0. 

In this paper a disjoint class of p~-atoms A is -* 

said to be exhaustive if the complement (UA) * D cont­

ains no (tx-atoms. Assume that ( f̂(tc) is count ably gener­

ated. Then the class A is countable; it is uniquely de­

termined mod 0. If A is empty, /a, is non-atomic; in any 

case, the non-atomic part i> of measure AJU is defined as 

the probability measure 

(1.1) ^(i)*-II 2- ( B e n 

for ^(Do)>0; ^(DQ) * 0 means that (t> is purely atomic. 

Since D is T-invariant, the non-atomic part of (Tf(0>) may 

be defined as the pair (T'f i> ) where T* is the restriction 

of T to the set D0; we say briefly that T* is the non-ato­

mic part of T (defined mod 0). 

In what follows we shall set 

(1.2) A (T) » -C De A :T̂ D » D mod 0? f q£N. 

It follows from the finiteness of the measure that 

U MA n(T) - A . 

We shall say that the number of atoms is essentially boun­

ded with respect to T if, for any qeN f AQ(T) is finite, 

and 

(1.3) lia sup i log (card( Afl(T))*+ co . 
<}j-+ oo " " 
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The entire paper is devoted to developing tools for pro­

ving the following theorem* 

The Theorem* A necessary and sufficient condition 

that a probability space have a finite generator with res­

pect to an automorphism T, is that (1) the space be count-

ably generated, (2) the number of atoms be essentiality boun­

ded with respect to Tf (3) the non-atomic part of T be ape­

riodic, and (4) the asymptotic rate of the automorphism T 

be finite: H(T)<+ oo . 

Moreover, if t is a finite generator for the automor­

phism T, then card (£ ) .>exp H(T). 

Remark* It will be shown in a paper to appear in the 

next issue that, under the condition stated in the theorem, 

there is a finite generator ^ for T with the property that 

card (£ )£exp H(T) + 1. 

2* Invariance of H(T)* .det us notice that the definit­

ion of the asymptotic rate H(T,£ ) makes sense for any coun­

table measurable partition £ j the lattice of such parti­

tions will be denoted by ZQ « Z^Ti. U h^(^ ) means the 

entropy of £ € 20, then the class 

is known to be a sublattice of ZQ; the entropy of an auto­

morphism T with respect to i e 2 ^ will be denoted by 

h ^ M >• 
As immediately seen from the definition, L( e , £ ) is 

monotonic in both variables; especially, 
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Consequently, 

(2.1) H(T,^ )*H(T,£ ) for % * f ( f » 1 e Z
0
) # 

In the following proposition we assume that we are gi­

ven together with the space under consideration another 

probability space (H',^', $*/); by &/(U, we denote the 

measure algebra associated with (^y(o/); T' is supposed to 

be an automorphism on JQ/ (on conjugaey cf«, e.g., 11 Dm 

Proposition 1. If there is an isomorphism between 

measure algebras #V(U, and W/QJU' under which T and T# 

are conjugate, then H(T) » H(T#). 

It is because (2.1) is valid with -?£-= f mod 0 so 

that 

(2.2) ^ * £ mod 0-*>H(T, <£) * H(T,£ ); £ , ̂  € ZQ. 

In this paper we usually decompose measures instead 

of the automorphism, keeping both T and & fixed (compare 

with the definition (1.1); to be consequent, i> should be 

restricted to D0 there). The latter principle is employed 

in the statement of the following 

Proposition 2. If (3T,**,) is countably generated, 

and if (vu is not purely atomic, then 

H^(T) « H ^ T ) , 

where -p is the non-atomic part of AJL, • If <iv is purely 

atomic, then H^(T) » 0. 
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Proof. Let A be an exhaustive class of atoms. Since 

A i s countable, £ 0 » A u iVQ\ where DQ * (UA )C i s a 

partition in ZQ. If /tt i s purely atomic, then t £ £ mod 0 

for any £ € Z so that H(Tf £ )^H(Tf fQ) by (2.1) valid 

mod 0 as well. If ^{I>0)>0f l e t fio be the purely atomic 

part of (U, (defined similarly as >> in (1 .1)) . Since £ 

i s T-invariant, H(T, 9Q) = 0; hence H^(T) « 0. The remain­

der of the proof i s based on the inequalities 

L ^ U . p ^ L ^ U . f ) • L £ ( e f ? ) f 

L > > ( e . ( e ( D 0 ) ) ~ 1 , p ^ L ^ ( 8 f f ) 

valid for any £ e ZQ and proved in Lemma 1.3 in 141 fp«770 

(cf. also the proof of Theorem 5.1, p. 783 )j hence it fol­

lows that, for any £ € 1Qf 

H^(T,£ )£H^lTf£)£max (H,, (Tf f ) fH -(T, f )), 

which guarantees the validity of the proposition. 

-*• Shifts. A finite or denumerably infinite set A be­

ing given, let S. be the shift in A (defined by (S^z)^ =-

Z.Î4.-J) and set 

£ zl »{zeAA,(z0,21,,,.,zn-1) « % } for zeA ; 

an elementary cylinder is defined as a finite-dimensional 

cylinder of the form S^1 C z 3 , iel, zeAn
f neN. The class 

of all elementary cylinders, denoted by V^t is taken as the 

open base of a topology which makes from A a Polish space. 

The &-algebra of Borel sets in this space will be denoted 

by Tj.: F* * rf y in our terminology Borel measures are 
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those that are defined on ?A and normed. 

For the sake of brevity, l e t us denote by [11 , I c A n , 

the set U i Izl r l e l j , and le t us set 

(3.1) W •'UfeAI:(SA)qz • z\ ; 
q 

it is Borel because 

W * *,CVSA)iq [A<11 » ̂ H' 

Lemma 3.1. A Borel measure (U, which is SA-invariant, 

is non-atomic if and only if 

CÕ 
(3.2) ^(K(SA)) = 0 where K(SA) » U^ Kq(SA). 

Condition (3.2) is necessary and sufficient for (SA, fO to 

be aperiodic* 

The facts summarized in the lemma are well-known and 

may be easily established. They show that the definition 

of aperiodicity given in Sec* 1 coincides for the shift 

with the usual one (the same is true for Lebesgue measure 

spaces). 

A point z&A is called regular (with respect to the 

shift SA) if there is an SA-invariant Borel measure <ctz 

which is ergodic with respect to SA and such that ( ̂ ^ is 

the characteristic function of the set I) 

m<~i , 
(3.3) (tî CE) « lim (l/n>.S -WS^) 

1 » m, 4, * 0 w* A 

for any l e t ; the measure <cc is uniquely determined by 

the regular point z. The set of a l l regular points in A 
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wil l be denoted by R l̂ i t hoMs that R̂ e F^f 

(3.4) d^^ij * * • f o r axj^r (^ Borel and S^-invariant. 

Cf. L51f Chapter 2, where an elementary theory i s built up 

without making use of topological concepts, for the more 

diff icult case of A countable. 

Lemma 3 .2 . If (u, i s a Borel measure which i s S^-inva­

riant and non-atomic, then 

foi z tH A : £JL% is non-atomic $ = 1. 

Proof. Making use of (3.4) and lemma 3.1, we obtain 

that (a(HA - X(SA)) * 1; set 

(3.5) Rj[ ~Kj**\i (W-y » ^ z r , *
 e HA* 

It follows from the theory of regular points (cf .C5], loc. 

cit.) that (^Z^A) S * C1^ Borel). Then the assumptions 

zeR^, z^K(S»), (6t2 is not non-atomic lead to a contra­

diction because the last implies that <a8(K(SA)) -> 0 so 

that ^ z(^K(S^))>0. Prom the definition (3.1) it fol­

lows that z,6 K^ SA^I Z2B RA» ("z s ^z ""^ z2€" K^SA** 

Summarizing all these facts we obtain the desired result. 

The partition YL "4E*3 - aeA$ represents the 

"alphabet" A in the space A j it is a generator of the 

space in the strict sense. In what follows we shall set, 

for {A Borel and S.-invariantf 

H(^) -HA(<«,) =H^(S A,y A), 

h(,u,) - hA(,u.) = h^(S A,y x). 
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If the condition 

(3.6) h(M,( yA)< + co , i.e. T A 6 Z « ^ F A * 

is satisfied, then 

(3.7) h(^) • Ĵ  h C ^ ) d^tz) 

as proved by Jacobs and by Parthasarathy independently (for 

A finite; the case of A countable is a trivial extension; 

cf.C43, Chapter 8). The basic tool for our investigation 

will be Theorem 9.3 from £41, proved later by making use of 

a more direct method as Theorem II in C5]» we shall restate 

it as 

I-̂ mma 3.3. If h^C T^)< + °° tnen 

H(/co) = ess.sup «{h(^6z) :z € R^ mod/t.t } » 

A correction. Since the proofs of Parthasarathy's theo­

rems given in C81 are not valid, and since the case -y* £ 

^ Z^(F A) was treated by the author both in L41 and [53 

with their aid, the condition (3.6) must be added to the as­

sumptions of Theorems 8.2, 8.3, 9.1 - 9.4, 10.1, lid,and 

11.3 in C43, and to the assumptions of Theorems I and II 

(together with Lemma II) in 151. 

4. -Properties of H(T). Let Zft * i £ e Z: card(£)£ a \ . 

If fc * ZQt then a sequence % * (Un,neN) of mutually dis­

joint sets belonging to the class ^ u i 0 $ will be cal­

led an ordering of the partition i if 

\nin: neN*3 $ -i0} f $ feza»s?ain = 0forn>a (aeN). 
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Throughout t h i s paper we sha l l assume that we have assigned 

to every ^ e ZQ an ordering %{£ ) of the p a r t i t i o n £ -

Let Aft * {tie N : n £ a ? • For A = Aftf £ e Zft or A = N, 

£ 6 ZQ, l e t ipL,A: i l — > A1 be defined by 

(4.1) ty/o^ « n i f f T1^ c l t n ( p j i d . 

Then (tjt, )~ establishes a 1-1 correspondence between FA n 

n-if A(IL) and (6^ ) T, ty/rVx * £ ? so that 

(4.2) ^ = ^ Y ^ 1 on F A 

is Borel and S.-invariant, and 

(4.3) H^(T,£ ) = H^f (SAf rA> * H(<J ). 

It follows from the construction of £** that it is valid 

Lemma 4*1. If f is a generator for T, £ e Z or 

P e Z , then &//u> and F./^* are isomorphic measure 

algebras for an isomorphism under which T and SA are conju­

gate, where A = A and A = N, respectively. 

In the remainder of this section it is supposed that 

A = N, r ? = r s
N - i M * ? < i > ? e V > l e t f0

:N-*N 

be defined by 

tr0(n) = m i f f & n ( f ) c U m ( ^ ) . 

Then the transformation ts^L£ $%1 -N -—• N given by 

t z » ( t 0 z . , i 6 l ) t z e N 1 

i s Borel measurable and 
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(4.4) ft1 « ^ a . " 1 for t « * tf ,ij ] . 

Lemma 4.2. If P € Z then 

E^(Tf7i ) « H A (Sf ̂
- 1 r ) = ess.sup-{ h( (ju% V* ):z € 

6 R mod ̂-v* j 

where S * ^ , r » T N, R * % , -t? » -c Cf f ̂  3 . 

Proof. Taking into account that 

(4.5) ih m(r
n)ih(m) 

for m * £4,z, zeR, and that 

-^*.4trB>-b^(*-V>. 

^z^""1 « v^ 2 for Z E H A ^ I R ) , ^(Hr^tr**1(H)) = 1, 

we obtain the equalities 

htr^tT 1) * h((c^z) * * V ( S t ^ ^ T ^ z6RAt" 1(R). 

By making use of the latter equalities and of Lemma 3.3 we 

get the desired result. 

Lemma 4.3. If | n f f , ?e 2 ^ then H(Tf <§n) t 

t H(Tf| ). 

Proof, The monotonicity of the convergence is guaran­

teed by (2.1). From Lemma 4.2 we obtain that 

sup H(Tf £n) * ess. sup 4 sup h( (<*gtfn ) :z € R mod (+* J 

for <tn * ^ t f i ? n l • % (4.4) (cf. the proof of Lemma 

4.2) 

sup h ^ * ; 1 ) = sup n ^ s ^ ^ r ) - V s(s f r>. 
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the latter equality beimg a consequence of the relation 

y e Z | (FN*# since h^, (S»T) S n((U/
z)

 by definition, 

the assertion of the lemma follows from (4.3) and Lemma 3.3. 

Proposition 3. H(T) * BUD H(T,£). 
f € *~(U> 

The assertion is an immediate consequence of Lemma 4.3. 

Proposition 4. H„, (T)2 .ri (T); if T is ergodic then 

H(U>(T) = h^(T). 

The assertion follows from (4.3), (3.7)*and Lemma 3.3 

immediately, because then it is guaranteed that 

H(tA(T,f )>h^(T,£) for f 6 Z ^ . 

Proposition 5. If f is a generator for T then 

H(T,£ ) * H(T) if £ € Z ^ . 

Proof. We are to show that % £> P , % *. Z ^ (it 

suffices \ c Z)s=-s-> H(T,i^ )6H(T, £ ), and after to apply 

Proposition 3 to get the equality asserted. Let % e Z ^ y 

then £ v ^ € Z ^ . Writing m for (U,*v^ and t for 

tstf v ^ , £ .1 , we obtain from Lemma 4.2 that 

H(T,£ ) = H^S,^"* 1^) = ess.sup^h (S, fT 1?*): z £ 

€ R mod m | . 

Prom the implications 

£ is a generator for T «=> "£~ -y is a generator for 

($9m)*ss$ m-(z€ R: T;" -y is a generator for (Sf (f>z) J * 

» 1 

we conclude that 
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h . (S , t " 1 ^ ) • h ^ (S) • h ( S , y - ) , z « R mod m, 

which leads to the equal i ty H(T, £ ) « H(T, f v ->£ ) , Q.E.D. 

5. Preparatory Lemmas. By P we sha l l denote the space 

of probabi l i ty vectors p =- (p ,nf iN); i . e . p„2: 0 , 2 . p . * 
*- IJ> O't' n 

* 1 . For p€ P, h(p) i s the entropy of p . We s h a l l s e t 

P 0 * 4.P e P;K(p)-< + co\* 

For pfeP, l e t N *«£neN:p n >Q$ . Se t t ing , for a e N , 

P a - \ P 6 P : c a r d (Hp) - a } , P^ = P 0 - J ^ P . , 

we s h a l l define t * t^tA.—• N_. (as to the notat ion A_ c f . 
p a p & 

Sec. 4) for P«.-?a and t » t :N—> N for pePQ' by the r e ­

quirement that 

Pt(n)**Wl)> Pt(n) " Pt (n+ l )—^ t ( a ) ^ t ( n + l K 

In the remainder of this paper we shall assume that 

logarithms are taken to base 2: log =- log2» Let -luj be 

the integer associated with a real number u by the condi­

tion that u - l-c-tu^-s u. Define 

bp(n) - { - logpt(n)* , t - tp, 

n€A f t for p c P a , and n e N for P^, r e s p e c t i v e l y . Set t ing 

r p ( l ) « 1, 

r p (n ) » m i n - l n > r p ( n - 1 ) : b p (n )> b p ( r p (n - 1)>$ , 

n>l, in case pe P̂ , and similarly in case P*Pa (with the 

restriction that both r (n - 1) and n^-a), we easily find 
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that 

r p ( n + 1) - r p ( n ) < e x p 2 L2bp(r ( n ) ) ] f 

because t orders N monotonically (compare with the con­

struction given by Krieger in 191). 

Given a triple (kfocf (*> ) of positive integers such that 
y 

^ ** ($ t ft~oo-*z2 , l e t g. A be a 1-1 mapping o f -^n^N: 
v 

:o6-£ n - < | 3 | into { 1 , 2 } . Let us ass ign to P€ PQ the mapping 

gp:Aa~""* Ao f o r P £ P a » QXid gp : E~"*"Ao f o r p 6 P o g i v e n ** 

g p ( n ) = gk9*,(h ( n ) f o r r p ( s U r * * r p < 8 • 1>» 

c o s r p ( s ) , (3= r p ( s + 1 ) , k * 2 b p ( r p ( s ) ) f where 

Ao * l tV i i l » 2 J • 

Sett ing 

(5.1) g p (n) = ( x l f . . , x k f 3 ) for g p ( n ) c i1,2 } k
f 

(xlf...fxk) » gp(n)f we have a map gp into 

(5.2) AQ = jj^-i (x1,...fxk,3): (xlf... fx^) € 4 1,2$ *. 

Given we N, let 

(%3) B**u£iHii%€klo:xs ( xi> i € l )> xi = ( 3 C i i - - -
•••"ia^* ^ ? ^ ( d i -*>*<>*. 

Put SQ - SA , A « 4lf2f3?
 W. It was shown in 191 that the 

o 
following assertion holds. 

Lemma 5.1. There is a 1-1 Borel measurable mapping 
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fw:Bw~"* A I s u c h t h a t fw(Sox) = SA fw ( x ) , x e BW 

For any A at most countable, let ^ be the Rohlin 

measurable partition of the space A defined by 

and let, for <a. Borel and S^-invariant, (Fm,m) be the com­

pletion of (FA,<<^). B|y (Q
A,^fm0) we shall denote the fac­

tor space of (A ,Fm,m) with respect to >̂̂ , and by V 

the corresponding homomorphism (cf. [11, Chapter IV). Let 

(J9&pA,) be the unit interval with Lebesgue measure. It 

follows from Lemma 3.2 and from Rohlin's theorem given in 

[2], § 4, par. 3 that 

Lemma 5.2. If (a is non-atomic then there is a mod 0 

isomorphism between (A ,F fm) and 

(Q*ffc
A
fin*)x (J,&f A,). 

In the following lemma we have set (Fm>m) for the com­

pletion of a Borel measure in N and (Qf& fm0) for the fac­

tor space of (P s 5>-g (the factor space of the homomorph-
N X 

ism Y - Y ); A being an arbitrary finite set, A endowed 

by a completed measure (-%t---) which is S.-invariant, we wri­

te (Q,S |fi0) for the factor space with respect to <p ^ cor-

responding to homomorphism Y . Setting S » Sj- everywhere 

in the sequel, we shall assume that m is S-invariant. The 

canonical system of measures with respect to <p and that 

with respect to (b * are denoted 

(m7,X€Q) and (rn^TcQ). 
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From (3.3) it follows (cf. [53, Chapter 2) that 

(5.4) mx « (U-z on Fj-nX, 55 6 X, Xe Q « 9 , 

my » ^ z / on F A nI , z'c I , I e 5 B ^ » ?A» 

Lemma 5.3. If Mf-Qo-* 5 (QQ e 3 , m0<Q0> = 1> is in-

jective and such that, for any E 'e P. and u real, 

Y" 1 -C T z': p,z, (S')<: u J e 3 , 

then Uf is (3,f§ )-measurable, and if flf = mQ Y"
1, # is a 

mod 0 isomorphism between the factor space of m and that 

of $ . 

Proof• Making use of the properties of the canonical 

measures my and of (5.4), we obtain that, for M e 3 » 2 € 

6 1, 16 Q, 

m-jtr^MnY) * *M'(*> mod Hf0, 

where ;£«/ means the characteristic function of li', and 

(Vcr"1*!') »-^(r^Vor) 

supposed that P "T4#6 P*. Hence the c3as3 of sets of the 

form 

«{T*z': (**z,(E')-< u$ , E*e VA, u rational 

/•v 

generates fo mod m . From here the assertion of the lemma 

follows. 

*>• The or ems • The preceding lemmas will be used toge­

ther with the notations given in Sec. 5 to proving 

Theorem 1. If (tc is a non-atomic Borel measure in N 
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which is invariant with respect to the shift S and such 

that 

then there is a finite set A and a Borel measure pj in 

A which is S^-invariant, together with a mod 0 isomorph­

ism between (A ,F^
t
 (u/) and (N ,F

N
, (Ct>) under which the 

shifts S. and S are isomorphic. 

Proof. Applying Proposition 5, we get H^(S) « 

« H^(S,y)
 s
 H(

(
cc)<+ 00 . Let 

R s { z 6 R : h C ^
2
) ^ H ( ^ ) , <o,

z
 non-atomic 5 . 

Prom lemmas 3.2 and 3.3 it follows that ^.(R^) = 1. Since 

R e f*~ (J3
n
), there is a strict correspondence between 

% * r (
V

} a n d
 V *

 P
 ~

l Q
o
 S O t h a t Q

o
 e
 * »

 m
o

( Q
o

}
 "

 1
* 

Choose o^> 0 and w e N such that 

w>2(H((uu) + oO + 2. 

Assign to every XeQQ the l e a s t integer q = q(X)eN for 

which 

t h i s i s possible by (5.4) and ( 4 . 5 ) . Since mx i s X-measur-

a b l e , the s e t 

Mq =- *XeQ 0 :q(X) - q } e f i » 

i . e . i t i s X-measurable. 

Given q e N , XeM , we have 

p x - (m xCг ín( үЧ)), n e N ) e P 0 , 
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U(Y^) i s the ordering associated to f^ by the conven­

tion given in Sec. 4. Let zn be the element in rf1 for which 

U n ( r q ) * t 5
n l . Define g^N** —> AQ (cf. (5 .1) t (5 .2) ) by 

«l(v s4x
(n)* B € V 

and gx:N —•*• (AQ) as the sequential coding 

(gx(2s))i * «x
(zi»2i+l»###»zi+q«l)» z c N*' i* I» 

It follows from our constructions given in the preceding 

section that gx^z) *s (Xtz)-measurab.lfi , and that 

S0(gx(z)) » gx(Sz) .j 

gx is defined mod mx* Set 

fx(z) * V g x ( z ) ) o n«x 1 (V» 

cf. (5.3). Since mx is ergodic, 

lim 1 .Ą ą-Ą ~1 %-J 
5 5 T v f b ^ o 0Pit

l^1iq*j»*-»»iq*q+fj-.l 

-fe | a % ^ r q ) f z^N1 a.s. (mx)t 

where cp :zn—> n (compare with C 93, proof p. 457) so that 

mx(gx (Bw)) * 1; consequently, f x is defined on N mod m^ 

and, by definition, fv ( z ) * s (XfZ)-meaaurable. It follows 

from Lemma 5.1 that f£ is a 1-1 Borel measurable mapping of 

g x (Bw) into A
1, A *-£l t2 t3l

W which commutes with the 

shifts S and S. (it is, of course, bimeasurab3.e because A 

and N 1 are Polish )j notice that * x ( g X 1 ( V * i s t h e B o r e l 8 e t 

f w(B w) t which we shall denote by BQ. 
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Let y :Q0—> Q be given by 

YX » * Z
# € RA: ^ 2 / * ( S ( f . S r l 5 t **%* 2£X f 

and set (cf. (5.4)) 

<a/<l') » J mx((f^)" , 1(B')oX) dm0(X)fE'c FAf-

the sense of the definition is guaranteed by the (Xfz)-

measurability of fy(z); <u/ is an S.-invariant Borel mea­

sure in A and its completion will be denoted by (F~f15). 

Since the assumptions of Lemma 5.3 are satisfied for Y 

defined above because of the (Xfz)-measurability of fx, 

then, setting mQ =- m Y f we find that Y is a mod 0 iso­

morphism between the spaces rt> and £> * cp * (more precise­

ly f Y is first shown to be Borel measurable, and then WQ 

is the completion of the measure constructed with the aid 

of Y and the restriction of mQ to Borel sets lying in S ; 

i.e. sets M for which T Tt€Fj-). 

Let Bx a (fx)
-1(B0nYX), and let fx be the restric­

tion of fx to B ^ It is easy to show that 

m(E') « L m-^B'oX) dm0(I)fE'€ ?m . 

Applying Lemma 5.2 both to (U, and p/ f we conclude that 

there are mod 0 isomorphisms cp f CP making A isomorphic 
** I 

to Qx J and N to Q x J . We shal l set mod 0 

Y(*f y ) * ( Y ^ - f ^ y ) ) , le%$ y e J , 

?x(y) « Cfl1 f - 1 ^ y), x « y-h 

where <j»x# cfj are sections of c? , 9 j f ^ y ) i s ( I , y ) -
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measurable because of the measurability of fv(z) and of the 

sections so that if is a mod 0 isomorphism between 

(Q,5Cfm0)x ( J , t f f . X ) and (Qf & fm 0)x (Jf X, X)i 

hence -y « Cfip <f~ is a mod 0 isomorphism between 

(A fFg,ia) and (N ,Fmfm) which commutes with the shifts S^ 

and S as follows from its construction; its restriction to 

a Borel subset of B0 of <o/-measure one on which it is de­

fined yields the desired mod 0 isomorphism between 

(AI,FAf <*,') and (N
1,?,,, <«,). 

Theorem 2. If (XI ,&,(*,) is countabfy generated and 

such that the number of atoms is essentially bounded with 

respect to an automorphism T and the asymptotic rate of T 

is finite, i.e. H(T)-<£ + oo , then if V is the non-atomic 

part of measure (tc such that (Tf i> ) is aperiodicf there is 

a finite generator for the transformation T of (^ f^) # 

Proof. Since (T,i> ) is aperiodic, it has a generator 

f o c Zo ^c:f#t e»S»t £63, Sec. 2); then, according to iJem-

ma 4.1, & /i> and FN/*>*° where 

i>*° m i>CiKcN ) ~ 1 

So 

are isomorphic, with the isomorphism making T and S (S * 

= SN) conjugate. Ely making use of Proposition 1, we conc­

lude that H.p (T) * H e (S); the latter number in general 

differs from H^ (S,<y), y * -yN, >>Q • »*° . An appli­

cation of Proposition 2 together with Proposition 4 yields 

the relations 
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+ 00 > H^CT) » H^ (T) * H^ (S)>h^ (S), 

which makes possible to apply Rohlin's theorem (cf. £l01f 

§ 10) to the aperiodic (Sf ^ 0 ) , and to assert that (Sf a>0) 

has a generator £ e Z (PN), i.e. with finite entropy 

(to be precise, %>0 is first completed and the found gene­

rator replaced by a Borel one). Applying Lemma 4.1, we con­

clude that P-j/x>0 and Pjg/̂  * are isomorphic, where 

constructed on the basis given by the system (N ,P^, *»0,S), 

for an isomorphi3m under which (S, ->>0) and (Sf *>§ ) are con­

jugate. Similarly aa above we conclude that 

K c (S) • H 0 (S)< • co . 

Since ^ e Z^ (PN) is equivalent to v e Z c (Pfl)f we 

may apply theorem 1 (cf. Lemma 3.1: D^ is non-atomic) to 

the system (N fP», i>* fS). Let i>^ * p* f and let t|r be 

an isomorphism between (Sf *>..) and (S^f a-)') for some A fi­

nite, »' Borel on A1. 

Now we take into account that the number cf atoms is 

essentially bounded with respect to T. It follows from 

(1.3) that there is a natural number deN such that 

card (A q)6d
q 

Setting a -» max (dfcard (A))f we immediately find that the­

re is a measure algebra isomorphism between S./»/ and 

Ŝ / /s>" for some Ŝ , -invariant measure on P̂ # f A' » Aa » 
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*«{neN:n£a§ • Since F^,/*>" is isomorphic to T/1> by 

construction, with eonjugacy between S*# and T, and since, 

by Lemma 3.1, 

tf"(K(SA,)) « 0 and, moreover, card (K (S^/))= aq 

for qc N, there is an infective map of A into K (S»# ) t 

say Y Q, with the property that 

fqCTD) " S v Y q(D). D e A qJ 

it is because d^-a. Hence we conclude that there is a mea­

sure (u/ on F̂ , , Borel and S^ -invariant, with v" as its 

non-atomic part, and an isomorphism between F.,/^' and 

$ /(U, under which S., and T are conjugate. The desired 

generator corresponds to ^y^#mod 0 if use is made of the 

measure algebra isomorphism. 

Proof of the Theorem. The sufficiency was establish­

ed in Theorem. Conversely, if $ is a finite generator for 

T, there is a finite set A, an S^-invariant Borel measure 

Aif in A , and a measure algebra isomorphism between 

FA/(U/ and y/fi> so that S. and T are conjugate with 

respect to it. Making use of this isomorphism we conclude 

that card ( A q) £ (card(A))
q, and that (T,tf ), y the non-

atomic part, is aperiodic. Q.E.D. 
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