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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

18,4 (1977) 

SPACES WITH ZERO SET BASES 

Michael L. WAGE, New Haven** 

Abstract: Answering a question raised by M. KatStov, 
we construct a regular space that is not completely regu­
lar, yet has a basis consisting of interiors of zero sets. 

Keywords: Regular space, completely regular space, 
zero set. 

AMS: 54C50, 54D10, 54G20 Ref. Z.: 3.961.1 

In this note we answer a question of M. KatStov (see 

[K], p. 105, Remark 5.3) by constructing a regular non-com-

pletely regular topological space that has a basis consist­

ing of interiors of zero sets. Define the FR-index of a to­

pological space to be the smallest cardinal, ae , such that 

{V: U is the interior of the intersection of not more than 

3t zero sets} forms a base for the space (see CKl). KatS-

tov originally asked whether for each «e there exists a re­

gular, non-complete^y regular space with FR-index it and ga­

ve an affirmative answer in the cases n 2 co,. Our space 

gives an answer to the remaining case of ae =- 1. 

The space Y . We will first construct a regular non-

normal space, Y, and then show how to use Y to construct the 

x) Partially supported by the Institute for Medicine and Ma­
thematics (Ohio University) and the National Science Founda­
tion, Grant MCS 74-08550. 
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desired example, Z. Let R° and R be two disjoint copies 

of the real line. The space Y consists of all points in t h e 

open upper half plane, 4 ( x , y ) : x,yc R,0< y } , toge ther wi th 

all points of R°U R1. Each point of Y\(R°U R1) is declared 

isolated. If x€ R , and n is a non-negative integer, we de­

fine B(x,n), the n basic open neighborhood of x, to be 

-tx}US where S is the open line segment in the upper half 

plane t h a t has lower endpoint x, is 1/n units long, and ma­

kes an angle of vf/A wi th the x-axis. If xe R , then B(x,n) = 

= 4x$US where S is as above (i.e. S is the open line seg­

ment in the upper half pla ne t h a t has lower endpoint x and 

is 1/n units long) except t h a t S makes an angle of 3s»r/4 

with the x-axis. Wit the topology generated by the above ba­

se, Y is a completely regular space, but is not normal since 

the two closed sets R and R can't be separated. 

Notation. The non-negative integers are denoted by co # 

Let F be the set of all functions, f, such t h a t 

i) for some n e co , f is a function from 4n,n + 1,...} 

into a) , and 

ii) f (k) = 0 for all but finitely many k e co . 

Next we need a conveni ent notation for certain subsets of 

Yx F and F. For each f 6 F, if Ac Y let A^ denote Ax-£f;rcY*F 

and if ye Y let y,-. denote the ordered pair (y,f)tYxF, For 

f cF, put f* = ig€ F: g I d o m f = f and I dom g\ dom f I = 1 • 

(Here dom f denotes the domain of the function f and g I * ^ 

is the restriction of t h e function g to dom f .) For each 

f€ F we will often be concerned with the minimum value of 

dom f which we denote by (jut. The symbol JT f is used for 
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^ f mod 2, i.e. <Jff is 0 if ^>f is even and 1 if (U>f is 

odd. 

The space Z. Let oo be a point that is not in Y* F 

and set Z ~ioo}U Yx F. Using the basic open sets, B(y,n) 

of Y and the notation given above we define a basis for 2. 

For each n e a> and fe F declare the following to be basic 

open subsets of Z: 

1) 4yfJ where ye Y\ R^, 

2) Bf(x,n) u Ui Bg(x,n): g£ f* and g((ag)>n{ where 

x e l ^ , and 

3) B(oo ,n) -» 4o>\ uU { Yg : (ug>n} uUi Y \ Rg
g : 

: r^g = riT . 

The reader can check that the above collection of basic o-

pen sets does indeed form a basis for a Hausdorff topology 

on Z. The basic sets of form (1) and (2) are clopen and 

sets of the form (3), while not clopen, do have the proper­

ty that cl(B(oo ,n + l))c B(<x> ,n). Hence Z is regular. 

Verification of the properties of Z. We first show 

that the basis of Z consists of interiors of zero sets. Ba­

sic open sets of the form (1) and (2) are clopen and hence 

interiors of zero sets. For sets of the form (3), note that 

the interior of <oo}uUi Y : (igZni is just B(a>,n). The 

set -too} u U 4, Y : (JLgZn J is the zero set of the continu­

ous function g: Z —> R defined by 

l/f(n - 1) if n - 1* dom f f г/ 

( x
'

) =
Іo otherwise. 

Next we show that Z is not completely regular by pro­

ving that the point oo and the closed set C = U { Y^: 
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: dom f = co ? cannot be separated by a continuous func­

tion. Indeed, suppose h: Z — • R is continuous and h(co) = 

= 0. We must show h(C)+l. This follows easily once it is 

realized that if h is small on a large part of Yf, then it 

is small on a large part of Y^/, for some f'c f * . More 

precisely: 

Assertion. Assume fe F with dom f 4* <o , U is a non­

empty interval in IT , and h(U^)_£b. Then for each e > 0, 

there exists f'c f* and U', a nonempty subinterval of W^ 

such that h(Û ,).s b + e . 

Proof. Fix f, U and b as above and le t e -> 0. Since 

h is continuous, for each xeU there exists an n such that 

h(B^(x,n ))£ b + € .By the Baire category theorem, there 

is an m such that 4 x € U | n = m } is not nowhere dense (in 

the usual order topology on if ). Define f'c f* by 

(f (k) if k€ dom f 

m if k = (C6f - 1 

undefined otherwise 

Then the above conditions and the definition of the topolo­

gy of Z imply that cl(h"* ((-co,b + g J)) contains a nonemp-

ty interval, U#, of .F£7 . Hence h(\)i,)£b + e . O 

Now we can show h(C)4» 1. Since h(a> ) = 0, there is an 

n such that h(B(cO ,n))< 1/4 and hence an fe F with h(Yf)-<-

< 1/4. If dom f ^ co , apply the assertion repeatedly until 

an f' and U' are obtained with dom f' * co and h(U^/)<l/2. 

But dom f' a co implies U^ c C, so h(C)4-l. 

Remarks. Note that we could have tried performing our 
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procedure on any non-normal space instead of Y (using two 

disjoint closed sets that can't be separated in place of 

R° and R ). However, with many non-normal spaces we woulld 

not obtain the desired counterexample. If the Tychonoff 

plank, for example, is run through our procedure, the re­

sulting space i£ completely regular. Petr Simon has point­

ed out that any completely regular non-normal space can be 

used to give the desired counterexample if it is changed 

slightly before running it through the above procedure. 

Here is his clever modification: Let X be any completely 

regula? non-normal space and le t H and K be two disjoint clo­

sed subsets of X that cannot be separated by disjoint open 

sets. Let X , X , X , and X4 be four disjoint copies of X. 

Let Y be the sr>ace obtained from XlU X2V X3U X4 by identi­

fying H1 with H2,.^2 with K3,H3 with H 4 and K4 with K^NowIcan 

be run through the our procedure using R =fl LUT and R = 

= H^U K4 to obtain the desired counterexample. 

R e f e r e n c e 
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