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TOLERANCE RELATIONS ON COMPIETE IATTICES
Juhani NIEMINEN, Vaasa

Abstract: It is shown that each compatible tolerance
relation T on a complete lattice L has a homotopy represen-
tation by means of two semicongruences induced by T on L.
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The purpose of this short paper is to show that each
compatible tolerance relation on a complete lattice has the
property of the homotopy type, i.e. a compatible tolerance
relation T on a complete lattice L can be decomposed into
two semicongruences on L and, on the other hand, expressed
by means of these two semicongruences. The concept of homo-
topy suitable for the approach here was introduced by Pet-
rescu in [4]. The other observations of this note are based
on the characterization of compatible tolerance relations
by means of < -coverings and related mappings given by Chaj-
da, Niederle and Zelinka im [1]. For other properties of
tolerance relations on algebras the reader is referred to
the recent paper [3] of Chajda and Zelinka and to the refer-
ences therein,

Let A =¢(A,F> be an algebra with the support A and
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the set F of fundamental operations. A tolerance relation
T on the set A is a binary, reflexive and symmetric rela-
tion on A. T is compatible with A , if for any n-ary ope-
ration fe F, where n is a positive integer, and for arbit-
rary elements a;,e..,a,, bl""’bn of satisfying ai'rbi for
i=1,...yn, we have f(ay,s¢++,8,)Tf(by,..0,b ).

Let M be a non-empty set. The family M ={M,,y T},
where I is a subscript set, is called a covering of M by
subsets, if and only if My is for each e T a subset of
Mand U,{ My |€T3=M. As usually, we suppose that
My# My for ¥+ (3,7 ,AeT . A covering M=
=4{My, ¥ €T} of Mis called a < -covering of M, if and
only if M satisfies the following two conditiors
(i) if gy e T and Ty I' , then Mas < Ua,.{ua,,'rc
"Iﬁ:’na'“‘r [reRisuy ;

(ii) if NSM and N is not contained in any set from A!,then
N contains a two-element subset of the same property.
The following lemma shows the connection between tolerance

relations on M and ~ -coverings of M[1, Thm, 1].

Lemma 1, ILet M be a non-empty set. There exists then
a one-to-one correspondence between tolerance relations on
M and 7T -coverings of M such that if T is a tolerance re-
lation on M and .M.T is the 1 -covering of M corresponding
to T, then any two elements of M are in the relation T if
and only if there exists a set from M, which contains

both of them.

The second lemma [1, Thm, 3] illuminates the proper-

ties of compatible tolerances on algebras.
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lemma 2, Let A =<A,F) be an algebra, T a tolerance
on A and My a T -covering of A corresponding to T. The
tolerance T is compatible with A , if and only if there ex-
ists an algebra B =< B,G> with the following properties:

(i) there exists a one-to-one mapping ¢ : F—>G such
that for any positive integer n and for each fe F the opera-
tion @ f is n-ary if and only if f is n-ary;

(ii) there exists a one-to-one mapping 7% : JI.T"—» B
such that for each n-ary operation feF and for any n + 1
elements M ,My,...,M from ““"J: the equality ¢ £(y (M;),...
eeey xMy)) = 4 (M) implies that for any n elements 8yrees
eceyay of A such that a;€ M, i=1,...,n, the element
flagyeee,a,)C K. .

Let A=<A,F>ana B =(B,3> be two algebras of the sa-
me type. Let n, be the maximum numte r n for which there exists
an n-ary operation £ on A and I the interval [1,n 1. A fa-
mily § =[(x 13¢5 B1 of mappings of A into B such that

A (£(ay,e-ray)) = £ (ay),..., X (ay)) for every nén ,
@150..,8,6 A, is called a homotopy of A into B . The map-
pings oc; are called components of homotopy E and (3 the
principal component of f . Moreover, it is shown that each
& 4 induces an equivalence relation on A L4, Lemma 0.1] .

We shall show that the mapping g relating to a compat-
ible tolerance T on L is a principal component of a homotopy
induced by T. The components o, and o, are generated by
semicongruences on L which are induced ty the <7 -covering
M p of T. We shall construct ec; which is given by an equi-
vale nce relation E(ocl) being compatible with respect to the
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A -operation on L, i.e. by a A -semicongruence. The equi~
valence relation E( ocl) is constructed by determining the
partitiom € inducing E(ec;). € is obtained by modifying
the T -covering M,n of the compatible tolerance T on L.

Theorem 1, Iet T be a compatible tolerance on a com-
plete lattice L, "“‘T the @ -covering corresponding to T and
let Mee M pe Then the family of sets Mg ={M},deI'E,
where M4 = Mo\ Ua,{ Erl Myn My 4 @, the 1sast element ey,
of M, is greater than the least element e; . of My (ey4 <
< eyy), Ny« My}, forms a partition of L determining a
A ~-semicongruence on L.

Proof. According to [2, Thm. 1], each M, € My is e
conves sublattice of L, and as L is complete, there are in
My the least and greatest elements ey and egy » Tespec-
tively.

According to the definition of M) , each M7 contains
at least e; ., whence M) + # for each JeI' . Moreover,
the properties of T imply that when a,be M2 then also aAabe
€ lt",‘- . Thus the theorem holds, if we can show that any ele-
ment x ¢ L belongs to at least one set M} of JA./.‘I, and My N
NML =@ for each pair o, yel' when &4 ¥ .

Let ac L and Mp(a) be the family of all subsets of
M p containing the element a. Let M, M, € M p(a) be such
sets that ey and €1, 8re non-comparable, Let q be the
least element of the set lrn M ; such an element q exists
and qé M. N M, , since L is complete and as an imtersectiom

of two convex sets l(a,n M, is a convex set of L, too. As

qe My , M, qZ ey, VvV ey, and as e), v ‘hee"’r” M,,
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qé °13'v e, , whence q = 17V s According to the com-

lee
patibility of T, any two elements of the interval
[eh,v €l %y eguj are in the relation T. Thus
LeypV €150 earV eszels M, ¢ M p(a) for some index
Ael . If e, £ 1y » then My ¢ M q according to the
condition (i) for M p; the same holds for M, , too. If ey
and e;, are non-comparable, then (e), A e,, )Tega, , as
egz,e l(?. ’ MA o Then ey> €15 N\ €15 , and 8o there were in
‘M’T a set containing properly M, , which is a contradiction.
Hence €1y 316 < €12 ¢ 12V €13 and so e = elTV €10e
Consequently, there is inm MT(a) for any two sets M, ,M,
& third set M, such that €14 = ela.v €150 As L is comple-
te, there is also an element V% €1, | % goes over all
indices of the sets in Mr(a)} = °lgb s Where elgb is the
least element of a subset Msb belonging to the < -covering
‘M".E and containing the element a. According to the defini-
tion of Ms'; and to the maximality of e1p with respect to a,
ae M@ , and so any element of L belongs to at least one of
the sets lls‘, , el

If Man H;,:i- g, # ¥ J° , then we can prove as above

¥
that &5V el’( € ng.n M2 . But this is the least element of

T
a subset M, € M, ey,> €14~ 161y » &nd thus, according to
the definitions of M2 and M:} y €1 € M ,l,; . This is a
contradiction, whence Hé‘,,n M) = @ for any pair & ,ye T,
d’'+ % . This comple tes the proof.
Let T be a compatible tolerance on a complete lattice
L and % @ mapping, 7 : Mp—> B, induced by T and defined

in Lemmm 2, As for any 9 € I' there exists a unique subset
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M3 € M3 of L, we can define a mapping «<i: L—>B as fol-
lows: for any ae L, &,(a) = 7(,(163,) if and only if acMz
in Mo

By using the dual proof of Theorem 1, we can show the
existence of a partition .M.‘.i. of L determining a v -semi-
congruence on L, As above, we define the mapping oyt L—
—> B induced by .ﬂ..‘r’ and 7 : for any a€ L, o,(a) = g (My)
if and only if aCM;, in ./K)r'. Now we are able to state our

main theorem

Theorem 2, Let L be a complete lattice, T a compatible
tolerance on L, ‘M’T the corresponding % -covering of L and
A the mepping, jx : L—>B, induced by T, where B is the
carrier set of the algebra J3 = <(B,G) defined in Lemma 2.
Then the triple § = [ eqyxp; 7 1 determines a homotopy of
L into 7 =(B,G ).

Proof. As 2 is defined only on the family .M.T, we ha-
ve to define 3, on L such that it gives the desired homotopy
property. For the two operations of L we define:

% (f(ay,8,)) = % (M;) which is obtained from ¢ f(7 (¥y),

X (My)), where a;€ M) and a,€ My (see Lemma 2 (ii)). As
a =ava = aAa in L, we obtain 7% (a) = y (f(a,a)) which is
already defined. By using this definition for x : L— B it
obviously holds that 7 (f(ay,a;)) = gf(ey(ay),xa(ay))
for any a;jay ¢ L, where &I can be substituted by f a8 L and
JA are of the same type. This completes the proof.
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