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COMMENTATIONES MATHEMATICAE ÜNIVERSITATIS CAЮLINAE 

18,4 (1977) 

TOIERANCE RELATIONS ON COMPĽETE IATTICES 

Juhani N m Ш E N , Vaasa. 

Abstract; It is shown that each compatible tolerance 
relation T on a complete lattice L has a homotopy represen
tation by means of two semicongruences induced by T on L. 

Key words; Tolerance, homotopy representation. 

AMS; 06A23 Ref. 2.; 2.724.38 

The purpose of this short paper is to show that each 

compatible tolerance relation on a complete lattice has the 

property of the homotopy type, i.e. a compatible tolerance 

relation T on a complete lattice L can be decomposed into 

two semicongruences on L and, on the other hand, expressed 

by means of these two semicongruences. The concept of homo

topy suitable for the approach here was introduced by Pet-

rescu in [4]. The other observations of this note aire based 

on the characterization of compatible tolerance relations 

by means of X -coverings and related mappings given by Ch«j-

da, Niederle and Zelinka in HI]. For other properties of 

tolerance relations on algebras the reader is referred to 

the recent paper 131 of Chajda and Zelinka and to the refer

ences therein. 

Let A *<A,F> be an algebra with the support A and 
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the set F of fundamental operations. A tolerance relation 

T on the set A is a binary, reflexive and symmetric rela

tion on A. T is compatible with A , if for any n-ary ope

ration f€ P, where n is a positive integer, and for arbit

rary elements a-*,.. • ,8., b,,...,b of satisfying a.Tb. for 

i = l,...,n, we have f(alf«. •,
a
n)

T--*(b1,.. .,b ). 

Let M be a non-empty set. The family Ms * ̂ M** , T 6 ^i* 

where V is a subscript set, is called a covering of M by 

subsets, if and only if M^ is for each y e I"1 a subset of 

M and Uy{ My \Y€ ^ 5 ~ M« As usually, we suppose that 

My * M^ for V + (S , f t fl & T .A covering M * 

M M , y , tf* € T § of M is called a x -covering of M, if and 

only if At satisfies the following two condition 

(i) if tfQ e F and T0 z T , then Ur s Uriur\v e 

*W**nr<*r\r*T0$euro ; 
(ii) if N S M and N is not contained in any set from At,then 

N contains a two-element subset of the same property. 

The following lemma shows the connection between tolerance 

relations on M and t -coverings of M £l, Thm. lj. 

Lemma 1. Let M be a non-empty set. There exists then 

a one-to-one correspondence between tolerance relations on 

M and x -coverings of M such that if T is a tolerance re

lation on M and JiT is the x -covering of M corresponding 

to T, then any two elements of M are in the relation T if 

and only if there exists a set from Jim which contains 

both of them. 

The second lemma [1, Thm. 33 illuminates the proper

ties of compatible tolerances on algebras. 
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Lemma 2. Let A - <A,F> be an algebra, T a tolerance 

on A and l » a t -covering of A corresponding to T. The 

tolerance T is compatible with A , if and only if there ex

ists an algebra 3}> =*<B,G> with the following properties: 

(i) there exists a one-to-one mapping cp : F — > G such 

that for any positive integer n and for each f e F the opera

tion <f f is n-ary if and only if f is n-ary; 

(ii) there exists a one-to-one mapping % : Jlm—^B 

such that for each n-ary operation fcF and for any n + 1 

elements MQ,M-L,.. .,114̂  from Mm the equality cp f ( ̂ (M-,),... 

..., 5£(M^) s 7[,(VL0) implies that for any n elements a.,... 

•••,8— of A such that a^c Mj, i = l,...,n, the element 

f(a1,...,ap)€ M0. 

Let A9 <A,F> and 3 * <B,0> be two algebras of the sa

me type. Let n0 be the maximum number n for which there exists 

an n-ary operation f on A and I the interval t l , n 0 . l • A fa

mily 9 *- t (oc . 5) : |C I; (11 of mappings of A into B such that 

(i (fCa-p...,^)) « f(oc1(a1),..., ^ n ^ ) ) for every n-*n0, 

a-p.-.^d A, is called a homotopy of A into 3 • The map

pings ocx are called components of homo to py f and (I the 

principal component of £ . Moreover, it is shown that each 

oc ̂  induces an equivalence relation on A £4, Lemma 0.1 J . 

We shall show that the mapping £ relating to a compat

ible tolerance T on L is a principal component of a homotopy 

induced by T. The components oc-̂  and oc^ are generated t*y 

semicongruences on L which are induced ty the x -covering 

Ji j of T. We shall construct oc ^ which is given by an equi-

valence relation ECetf̂ ) being compatible with respect to the 
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A -operation on Lf i . e . by a A -8 end congruence. The equi 

valence r e l a t i o n E( oc-^) i s constructed by determining the 

p a r t i t i o n £ inducing BCcc-^K e i s obtained by modifying 

the X, -covering Jim of the compatible tolerance T on L. 

Theorem 1. Let T be a compatible tolerance on a com

p l e t e l a t t i c e Lf ALm the <Z -covering corresponding t o T and 

l e t M.c M m* Then the famity of s e t a M4^ ~iu£, f cTe V$ , 

where M£ » M^V ^y*£ M y I M y A M^-^ #> the l e a s t element %yr 

of M,y* i s greater than the l e a s t element e - ^ of M^ («lf:f
 < 

< my* ) f M^ € j t j } , forms a p a r t i t i o n of L determining a 

A -semicongruence on L. 

Proof. According to £2 , Thm. l j f each My c JLm i s a 

conves s u b l a t t i c e of Lf and as L is complete, there are in 

My the l e a s t and greates t elements e - ^ and eg 3 > , , r e spec 

t i v e l y . 

According to the d e f i n i t i o n of M .̂ , each M*, contains 

a t l e a s t e ^ f whence M£* £ 0 f or each eTe P # Moreover, 

the properties of T imply that when a f b e M£ then a l s o a A b e 

€ M£ . Thus the theorem ho lds , i f we can show that any e l e 

ment x e L belongs to at l e a s t one s e t M* of Jimf and tf*, o 

n M j = 0 for each pair cTf y e T when cf.4* X • 

Let a 6 L and ./H-pCa) be the family of a l l subsets of 

Mm containing the element a. Let My ,M c JL » (a) be such 

s e t s that « l r and e-» are non-comparable. Let q be the 

l e a s t element of the s e t My, n M . ; such an element q e x i s t s 

and q 6 ML, n M^ , s ince L i s complete and as an i n t e r s e c t i o n 

of two convex s e t s M^n M^ i s a convex s e t of L, t o o . As 

q«My , M^, q 2 e l r v e l a e and as e l r v • l r J f t « H r n M^ , 

- 642 -



Q* e l r v elae > wnence °- = e i y v eia€.# According to the com

patibility of T, any two elements of the interval 

^ e l r v el*e» e « r v e«3e^ are *n *ne r el a , t^ o n T* Thus 
t e l r v e lae » e i r > v e g a e ^ ~ MA c ^ T*a* f o r a o m e i n d e x 

X c V . I f e-^ -£ e l y , then M^ ^ Ji T according to the 

condition ( i ) for ^^i the same holds for M^ , t o o . I f e ^ 

and e-j« are non-comparable, then ( e - ^ A e^* ^ € # > > a s 

e^ € My , M« . Then *iy> e i y A ei^ i ^^ s o there were in 

t/Hrj a s e t containing properly M^ , which i s a contradict ion . 

Hence e l y t«iae£ e i a * e i r v elae and s o el\ a e i r v el*e# 

Consequently, there i s in .jH,„,(a) f o r any two s e t s M~ ^U^ 

a third s e t Mĵ  such that e^* - e ^ v e-j^ . As L i s comple

t e , there i s a lso an element N ,̂*-. © j ^ I ae goes over a l l 

indices of the s e t s in .4i-(a)} B e-̂ -, , where e-,^ i s the 

l e a s t element of a subset M̂  belonging to the x -covering 

M,^ and containing the element a. According t o the d e f i n i 

t i o * of M* and to the maximality of e-^ with respect to a, 

ae M£ , and so any element of L belongs to at l e a s t one of 

the s e t s MJ , y c P , 

I f M* n M* 4 0 , tf 4 cT , then we can prove as above 
0 cr 

that « ^ v e-. ., c M* n M* . But this is the least element of 

a subset M ^ e Ji^f
 eia > ei<f >ely » and 'tnus> according to 

the definitions of M£ and M* , e-^ c M^, ,M* . This is a 

contradiction, whence M~* n M* = 0 for any pair cT , ^ c P 7 

cT.4 'y # This completes the proof. 

Let T be a compatible tolerance on a complete lattice 

L and % a mapping, ;£ : Mm—• B, induced by T and defined 

in Lemna 2. As for any y € V there exists a unique subset 
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M* e J/L^ of L, we can define a mapping oc-̂ : L —>B as fol

lows: for any a 6 L, oc-jta) « % (M^ ) if and only if aeMJ, 

in JL§. 

By using the dual proof of Theorem 1, we can show the 

existence of a partition Mm of L determining a v -semi-

congruence on L. As above, we define the mapping oc2: L—-v 

—> & induced by JL% and $£ : for any a e L, <-£2(a) c t<M-*) 

if and only if a € M* in A, m. Now we are able to state our 

main theorem 

Theorem 2. Let L be a complete lattice, T a compatible 

tolerance on L, JK --, the corresponding X -covering of L and 

^ the mapping, % : L— .>B, induced by T, where B is the 

carrier set of the algebra 3 = <B,G> defined in Lemma 2. 

Then the triple £ == C °^i»<2» *t ̂ determines a homotopy of 

L into «B » <BfG > . 

Proof. As ^ is defined only on the family Ami we ha

ve to define ^ on L such that it gives the desired homotopy 

property. For the two operations of L we define: 

^(f(alfa2)) -* ̂ (M0) which is obtained from yft^fM-^), 

\ (Mg)), where a-,* Mj and a2€ M£ (see Lemma 2 (ii)). As 

a » ava =- aAa in L, we obtain 7(, (a) * ^ (f(a,a)) which is 

already defined. By using this definition for % : L—,• B it 

obviously hold3 that ^(f(*lfa2)) =- yf (oc1(a1), oc^(a2)) 

for any a-^a^c L, where y f can be substituted by f as L and 

,3 are of the same type. This completes the proof. 
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