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INDUCTIVE DIMENSIONS FOR COMPIETELY REGUIAR SPACES
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Abstract: Relative inductive dimensions and two new
inductive dimensions for comple tely regular spaces are stu-
died.
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0. Preliminaries. All given spaces are assumed to be
completely regular. The collection of all zero-sets in X will
be denoted by Z(X). If X Y, then Z(X,Y) is the trace on X of
the collection Z(Y). Let N(X) denote the family of all col-
lections of the form Z(X,Y) {1],[2), Obviously each element
of N(X) is precisely a nest generated intersection ring in
the sense of [ 3], a strong delta normal base in the sense of
[4] and a zero-set structure in the sense of [5]. If Fe
€ N(X), then w(X,% ) denotes the Wallman compactificatiom and
v(X,5 ) - the Wallman realcompactification of X [3]. When
there is no question as to the space X, we will simply write
w(F ), v(#). The space of real numbers is denoted by R.

The following definitions and propositions are given in
{11,121, ’
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Definition O.1l. Iet XcY. We call a mapping f: X— X’
a Z2(X,Y)-mapping if £71(Z) is an element of the collection

Z(X,Y) for each zero-set Z of X'.
Definition 0.2. Let XS Y. We shall say that a space X

is realcompact with respect to Y if X = v(X,Z2(X,Y)).
Proposition O0.l1. Let 3 € N(X). v(¥) is the smallest

space between X and w(% ), which is realcompact with
respect to w(3 ). In particular, X is realcompact with res-
pect to w(F ) if and only if X = v(F).

Proposition 0.2. Let F € N(X) and X Te w(5 )., The

following statements are equivalent.
(1) Every Z(X,w(F ))-mapping from X into any realcom-

pact space Y has an extension to a Z(T,w(% ))-mapping from

T into Y.

(2) Every Z(X,w(g ))-mapping from X into R has an ex-
tension to a Z(T,w(# ))-nmapping from X into R.

(3) If a countable family of elements of the collection
% has empty intersection, then their closures in T have
empty intersection.

(4) For any countable family of elements F, of the col-

lection 5.
[ Arl = Alr]
meq4 DT mz 4 n-T °

(5) Every point of T is the limit of a unique, real,
# ~ultrafilter on X.

(6) XeTev(d).

(1) w(T,2(T,w(%))) = v(F).

Proposition 0.3. let F & N(X) and Fe 7 . Then [Fly (%)
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is an element of the collection Z(v(9 ),w(F)) and
v(F,2(F,w(5))) = [F]_ 2.

Proposition 0.4. Ilet € N(X) and Fe Z(v(F),w(F)).
Then F = [FN x]v(g.).

1. Relative dimensions I(X,Y) and i(X,Y)

Definition 1.1. Let XSY. The relative large inducti-
ve dimension of X with respect to Y, denoted by I(X,Y), is
defined inductively as follows. I(X,Y) = -1 if and only if
X = @, For a non-negative integer n, I(X,Y)< n means that
for each pair Z,, Z, of disjoint elements of collection
Z(X,Y), there exist Z€ Z(X,Y), 0;,0,€ CZ(X,Y) with X - 2 =
= 0,U 05, 03N 0, = &, 2,5 0; (i =1,2) and I(Z,¥)4n - 1.
I(X,Y) = n if I(X,Y)£n and I(X,Y)4n - 1. I(X,Y) = © means
that there is no n for which I(X,Y)< n.

The relative small inductive dimension i(X,Y) of X
with respect to Y is defined by analogy with Definition 1.1.

These relative dimensions I(X,Y), i(X,Y) are topologi-
cal invariants in the following sense: if f is a homeomor-
(X£Y), then
I(X,Y) = I(X",Y’) and i(X,Y) = i(X’,Y¥"). On the other hand,

4

phism from ¥ onto any space Y’ with £(X) = X

these relative dimensions are not topological invariants in
the usual sense [ 1],

The following two lemmas are obvious.

Lemma 1,1. Let X&Tc Y. If T is z-embedded [ 6] in Y,
then I(X,T) = I(X,Y) and i(X,T) = i(X,Y).

Lemma 1.,2. Let X&Y. If Zé Z(X,Y), then I(2,Y)< I(X,Y).
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Lemma l,3. Iet XS Y. If a space X is the union of &
sequence '{Di} of disjoint sets such that the partial unions
éL‘J_L Dj are elements of the collection Z(X,Y), then I(X,¥) &
sup I(Dy,Y).

Proof. The proof of this lemma is simile to the proof
of the Dowker’s additive theorem for dimension Ind in comp-

letely normal spaces [7].

Lemma 1.4. Let XSY, If Ge CZ(X,Y), then I(G,Y) <
£I(X,Y).

Proof. Let I(X,Y) = k. In case k = -1 the lemma holds
clearly. We suppose that k<n and that the lemma holds for
k€n - 1.

let Z€ 2(G,Y) and 0Z € CZ(G,Y) with Z< 0Z. We may choose
four sequences:

1. 42350, Z3€ 2D, 1= 1,2,...,

2, 1059, 0je C2(x,Y), i = 1,2,...,

3. AR¥E., Fie 2(a,Y), i = 1,2,...,

4. 163 1, 65 C2(G,Y), i = 1,2,...

with
-} . .
ZiS Oi+1§ Zi+1; G = ’1,&.)4 Zi, 1= 1,2,Qoa,
o
Z = ‘0“04?15?14_1; Gis FiSOZ, 1= 1,2,.-0 .

By Lemma 1.2, I(Zj,7,Y)% n and hence there are S;€ Z(Zj,,,Y),
e CZ(Zi'rl'!)- i=1,2,... with anis TS 85;S cin 0547 and
I(Sy - T4,Y)én -1, i=1,2,... . Evidently T;¢ CZ(04,,,Y)
o0
and hence T;€ CZ(G,Y), i =1,2,... . let S =, 8;, T =
%0
=, T4, We have ZSTSS5S0z, T€ Cz(G,Y) ana
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(=4 o0
5; € IR U[Qz{&, SJH € O R US, i=1,2,...

o0
Hence S = &,04{Fk U [«}yﬂmsj” and 80 S is an element of the
collection 2(G,Y).
o
Let D = ;\Jo(S; - T;) and D =,\J,D,. Clearly, D, -
- D is an element of the collection CZ(S.,, - Tk+1,Y) and
by the induction hypothesis I(Dk+1 - Dk,r)é n - 1, Then by
Lemma 1.3, I(D,Y)<n - 1, Finally, S -~ T€ Z(D,Y) and so, by
Lemma 1,2, I(S - T,Y)<n -~ 1. Thus I(G,Y)<n,

Theorem 1.l.(The subspace theorem.) If MSN&X, then

I(M,X)&I(N,X).
Proof. Let I(N,X) = k., For k = -1 the result is trivial.

We assume its validity for k<n - 1 and suppose k<n.

Let 29, 2, be disjoint elements of the collection
Z(M,X). There are elements F,, F, of Z(N,X) with 2; = F;,N M
(I =1,2). Evidently, N - (F)NF,) = Ge CZ(N,X) and hence, by
Lemna 1.4, I(G,X)<n. There are Fe Z(G,X), Gy, G,€ CZ(G,X)
with @ - F = G U G,, G;N G, = @, F;NGE0G; (i =1,2) and
I(F,X)én - 1. Clearly, G;€ CZ(N,X) (i = 1,2). Finally, let
FNM =2, GNM=0; (i =1,2), Then M- Z =0,U0,, 0,100, =
=@, 2,€0; (i =1,2), 2€2(M,X), 0, O, € CZ(M,X) and by the
induction hypothesis I(Z,X)< I(F,X)4&n - 1., Thus I(M,X)<n,

Theorem 1,2. (The countable sum theorem.) Let XSY, If

(.-}
X = 4194 Z; with Z;e€ Z(X,Y) and I(Zi,Y)é-n for all i = 1,2,...,

then I(X,Y)<n,
Proof. For n = -1 the result is trivial. We assume its

validity for n€k - 1 and suppose n<k,
Let Dj = 439;’ 2. Each Dy is an element of the collection

- 627 -



Z(X,Y) and by the subspace theorem I(Dj4q = DJ-,Y) <

£1(2.,,,Y)%4k. Then by Lemma 1.3, I(X,Y)<k.

J+1?
Theorem 1.,3. If MSNEX, then i(M,X)<i(N,X)

Proof is obvious,

Theorem 1.4, If X€YST, then i(X,Y)<i(X,T).

Proof. Let i(X,T) = k. For k = -1 the result is trivi-
al. We assume its validity for k<n - 1 and suppose k<n,

let x¢7Z and Z€Z(X,Y). There is a zero-set F’ in T
such that ZEF’ and x&¢F’, Hence F = F'N X is an element of
the collection Z(X,T) with ZSEF and x ¢F. There are O, 0y €
€ CZ(X,T), D€ Z(X,T) such that X - D = 0;U0,, 0,10, = 8,
x€0;, FSO, and i(D,T)€n - 1, Clearly, D€ Z(X,¥), 0;, O, €
Cz(X,Y) and by the induction hypothesis i(D,Y)< i(D,T)<€n - 1.
Thus i(X,Y)<n.

Theorem 1,5, If AUBEY, then I(AUB,Y) €I(A,Y) +
+ I(B,Y) + 1.

Proof. Let I(A,Y) =Xk;, I(B,Y) =k, and AUB = X, For
k) = k2 = -1 the result is trivial. Let k 4 n, kzém and as-
sume yhe theorem for the cases kyén, ky4m - 1 and k1£ n-1,
k,4m, - \

Let Zl’ Zz be d:.saomt elements of the collection
Z(X,Y). Choose 01,025 CZ(X Y) and Fy,F, € Z(X,Y) with 2;50; €
€ F; (i-=1,2)-and F1N F, = @, Since I(A,Y)&n, there are G,,
G,€ CZ(A,Y) and DeZ(A,Y) with A - D = GUG,, G;N0C, = &,
FsNASG; (i =1,2) and I(D,Y)£n - 1. By Proposition 14 from
(81, there are V,,V,€ CZ(X,Y) with V;N A =G; (i =1,2) and
VNV, = #. Then Uy = (V; - F,)U 0y and U, = (V, - F}) U0,
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are disjoint elements of the collection CZ(X,Y) with ZiE Ui
(i =1,2) and A - (U;UU,) = D. I(A - (U,UU,),Y) = I(D,Y) £
4n - 1; by the subspace theorem, I(B - (U;U U,),Y)<€m. By
the induction hypothesis I(X - (U;U Uz),Y)é n + m. Thus
I(X,Y) n+m+ 1.

Theorem 1.6. If AUBSY, then i(AUB,Y)<£i(A,Y) +
+ i(B,Y) + 1.

»

Proof is similar to the proof of Theorem 1.5.

Theorem 1.7. If F e N(X), then I(X,w(F)) = I(v(F),
w(F)).
Proof. The theorem follows f;'om Propo_gition 0.3 and

from the following lemma.

Lemma 1.5. Let % € N(X). If two disjoint elements F,,
F, of the collection 3 can be separated’by an element F of
the collection F , then [Fl 5y separatea: [Fi]v(g’) i=
= 1,2, ' o YN T

Proof is trivial, .- e

Theorem 1.8. If XSY, thén i(XyY)¥HX;Y). .

Proof is trivial. Lot

Definition 1l.2. Let XsY,. The'relative large inducti-
ve dimension modulo R, denoted by R - I(X,Y), is defined in~-
ductively as follows. R - I(X,Y) = -1 if and only if X is
realcompact with respect to Y. For t; non-negative integer n,
R - I(X,Y)4n means that for each paii""Zl', Zz of disjoint
elements of the collection Z(X,Y), there are Ze< Z(X,Y), O,
0,€ CZ(X,Y) with X = 2 = 0,U0,, 0,00, =8, Z; O (i=1,
2) and R - I(Z2,Y)4n - 1.
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Theorem 1,9. If F & N(X), then R - I(X,w(F)) =
= I(v(F) - X,w(F)).

Proof. a) R - I(X,w(F))<«I(v(F) - X,w(F)).

Let I(v(%) - X,w(&)) = k, For k = =1 the result is
trivial, We assume its validity for k€n - 1 and suppose
k€n,

Let 2,, 2,€ 5 and Z;N Z, = ¢. There are V;,V,€ C &,
T,,Tp € F with 2, € ST, (i =1,2) and TyN T, = @, By the
propositions 0.2, 0.3, [T4] v(g)ﬂ[Tsz(y) = # and [7y] v@) €
Z(v(%),w(F)) (i = 1,2), Clearly, [Ti]v(g)n (v(F) -X) =
= Fy€ 2(v(F) - X,w(F)) (i =1,2) and F;N F, = @. There are
sets Fe Z(v(%) - X,w(3")), Gy,08,€ CZ(v(F) - X,w(F)) with
Fi€0; (i =1,2), 6N G, =@, (v(F) -X) -F=0,00, and
I(F,w(F))%n - 1. By Proposition 14 from [ 8], there are
G{ & CZ(v(F ),w(F)) with G NG, = # end G/N (v(F') = X) =
=06 (1=1,2), Let Uy = G) -[ T gy mad Up = Gy = [Ty) (2.
Clearly, U;N U, = 8, AT, = &, U,NT, =4, U N (v(F) - X)=
=G (1 =1,2) end Use CZ(v(F),w(F)) (i =1,2). let H =
U3l 055y (Vy), where Op 2y (V;) = v(F) - [X - Vi) _ 0
(i =1,2). Clearly, Hje CZ(v(F),w(F)) and Hi N (v(F) - X)=
= 0; (i =1,2). Bvidently, Z;S VS0, (o (V;)SHy (i = 1,2)
and H)NH, = g. let D* =v(F) - (H;UH,). We have D" €

€ Z(v(F),w(F)), D’N (v(F) - X) = F end hence by Proposi-
tion 0.4, [D’N X3y = D’ and D’ = DUF, where D = D'N X,
By Propositiom 0.3, [DJv(T) = v(D,2(D,w(F))) and hence F =
v(D,Z(D,w(F))) - D. Clearly, DeF , H;NXeCTF , 2, &
EHNX (i =1,2), (HHNXINEHNX) =g, (HN X) U(HNX) =
X - D and by the induction hypothesis, R - I(D,w(#)) £
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£I(F,w(F))€n - 1. Thus R - I(X,w(§))<n.

b) I(v(F) - X,w(F))£R - I(X,w(F)).

Let R - I(X,w(#F)) = k. For k = -1 the result is trivi-
al. We assume its validity for k<n - 1 and suppose k<n,

Let 29,25€ Z(v(F) - X,w(F)) and Z,N 2, = #. There
are 2{€ Z(v(3),w(F)) with zi‘n (v(F) - X) =25 (1 =1,2).
let 2 = Z N Z,. Clearly, Z2€ ¥ ,X -Z2€CF , X - Z ie den-
se in v(F) - Z, It should be observed that each
Z(X ~ Z,w(7F ))-mapping from X - Z into R has an extension to
8 Z(v(3) - Z,w(%))-mapping from v(F ) - 2 into R. This
shows that by Propositiom 0.2, v(X - Z,72(X - Z,w(5))) =
= v(v(F) - 2,2(v(F) - Z2,w(F))). v(F) - Z is realcompact
with respect to w(7 ) and hence v(F) - Z = v(X - Z,2(X -

- Z,w(FN).

Evidently,

(1) v(X -2,2(X - Z,w(F))) - (X =-2)=v(F) - X,

Clearly, z{n (X = 2) = Fye2(X - Z,w(F)) (i =1,2) and
F{NF, = #. There are Fe Z(X - Z,w(F)), 0,0,€ CZ(X - Z,w(F))
with (X - 2) = F = 0,U 05, 0,10, = @, F;€0; (i = 1,2) and
R-I(F,w(F)<&R-IX -2,w(F)) -1, X ~-ZeCF and hen-
ce, as in lemma 1.4, R - I(X - Z,w(F'))<R - I(X,w(F)}. Fi-
nally, we have R - I(F,w(¥ ))&n - 1. By Lemma 1.5, [Fl (0 o
separates fFllvc?W-Z end [ Fyl yzy_z. Then D = [Fl oy o N
N (v(F) - X) separates Z, and Z,. Finally, as it is shown in
the part a) of this proof, D = v(F,Z(F,w(%))) - F and by the
induction hypothesis, I(D,w(F )}<R - I(F,w(§))£n - 1. Thus
by (1), I(v(F) - X,w(%)) £n.

Remark 1. It should be observed that the dimension
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R - I(X,Y) satisfies conditioms which are similar to the
countable sum theorem (theorem 1.2) and Lemma 1.4 respecti-
vely. On the other hand, R - I(X,Y) is not monotone in gene-

ral,

2. Inductive dimensions Indox and indox

Definition 2.1. Ind X = I(X,X), ind X = i(X,X) and
R - Ind X = R - I(X,X).

Theorem 2.1. Ind,, .’Lndo and R - Indo are topological
invariants.

Proof is trivial.

Theorem 2.2. indOXéIndox.

Proof follows from the theorem 1.8.

Theorem 2,3. ind X = inf {i(X,Y),XsY¥}.

Proof follows from the theorem 1l.4.

Theorem 2.4. If XSY, then ind X£ind Y.

Proof. By Theorem 1.4, ind X<i(X,Y); by Theorem 1.3,
i(X,Y)%4i(Y,¥) = ind Y. Thus ind X&ind Y.

The similar results (Theorems 2.3 and 2.4) are not true
for the dimension Ind,.

Theorem 2.5. If XSY, then I(X,Y)£ Ind Y. In particu-
lar, if X is z-embedded in Y, then IndoxéIndoY.

;P_mg‘ follows from the theorem l.1 and Lemma l.1.

Corollary 1, If G is a cozero-set in X, then Ind G <
% Ind ox.

Theoren 2.,6. If X is the countable union of zero-set
@
subsets {23 4=1 Yith I(Z;,X)€n for all i = 1,2,..., then
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Ind X&€n. In particular, if each Z; is z-embedded in X and
Indozié n, then Indoiu n.

Proof follows from the countable sum theorem and Lemmae
1.10

Theorem 2.7. Ind X = Ind vX, where vX is the Hewitt
realcompactification of X.

Proof follows from Theorem 1.7 and Lemma 1.1,

The following corollary gives a positive answer \on the

question 2 from [9] for pseudocompact spaces,

Corollary 2 [10]. If X is pseudocompact space, then
Ind X = Ind,BX (X is the Stone-Tech compactification of
x).

Theorem 2.8. If the Hewitt realcompactification vX of
X is Lindeldf, then indovx = Ind vX.
Proof is similar to the Smirnov’s theorem: ind 83X =

= Ind(3X for perfectly normal X [11].
Corollary 3. If X is Lindeldf, then ind X = Ind X.

Theorem 2.9. R - Ind X = I(vX - X,vX).

Proof follows from Theorem 1.9 and Lemma 1l.l.

Corollary 4. If vX - X is z-embedded in vX, then
Ind,(vX - X) = R - Ind X.

Corollary 5. If X is a pseudocompact space satisfying
the bicompact axiom of countability [12], then indo(ﬂX - X)=
=R-Ind X = Ind (B X - X),

Theorem 2.10. If X = AUB, then Ind X&I(A,X) + I(B,X)+
+ 1 and ind X4 i(A,X) + i(B,X) + 1.
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Proof follows from Theorems 1.5 and 1.6.

It is shown in [13] that for each non-negative integer
n there exists a comple tely regular space ® with X* = X”lt u
ng, x’{ and Xg are the zero-sets of X°, dim Xg =0 (i=
= 1,2) and dim X* = n (dimension dim is defined as in [14]).
This example shows that "Urysohn Inequality" - Ind (AUB) <
é-IndoA + IndoB + 1 does not hold in general (indeed, for
an arbitrary completely regular space X we have: dim X

Ind X and "dim X = O if and only if Ind X = o").,
The following theorem gives a positive answer on the

questiom 3 from [9) for pseudocompact spaces.

Theorem 2.11, For each pseudocompact space X with
@X=% and Ind X<n, there exists a compactification bX

of X with wbdX = and Indobx.‘-n.

Proof follows from Corollary 2 and from the following

Theorem [15]. If £ is a continuous mapping from a bi-
compact X into & bicompact Y, then there exists a bicompact
Z, continuous mappings g: X—> Z and h: Z—>Y such that f =

= hg, Ind,2£Ind X, @72 £ Y,
Definition 2.2. We call a mapping f: X—> Y a zero-

mapping if £(Z) is a zero-set of the space Y for each zero-
set Z of the space X.

The fpllowing theorem generalizes the well-known Hure-
witz Theorem [16].,

Theorem 2,12, Let f be a continuous zero-mapping of a
space X onto a space Y such that the inverse image f-l(y)

consists of at most k + 1 points for each point y of Y.
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Then we have IndoYé Indox + k.

Proof is such as in [171].

Finally, we have the following generalization of the

Alexandroff s theorem [18].

Theorem 2.13. Let f be a continuous cozero-, zero-msp-
ping of a bicompact X onto a bicompact Y such that the in-
verse image f'l(y) consists of at most countable points for
each point y of Y. Then we have IndoX = IndOY.

Proof is such as in [19) (notion of a cozero-mapping is

defined as in the definition 2.2).

Remark 2, It should be observed that the dimensionslndo
and ind° are equal to the dimensions Ind and ind respective-

ly in the class of perfectly normal spaces.
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