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ON LOGARITHMIC INFORMATION IN POINT PROCESSES

Petr MANDL, Praha

Abstract: Pairs P°,Pl of probability distributiong of
point processes are considered. The respective logarithmic
information is expressed in terms of the intensity (hazard
function) ratiol.Whence a sufficisnt condition for absolute
continuity of P with respect to P~ is obtained. The proofs
given require much simpler mathematical apparatus than the
derivation of similar results using general theory of point
processes,

Key words: Point processes, hazard function, informa-
tion, aEsqute continuity.
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l. In this note a point process is a random sequence
of points {%, , n=1,2,...3 on the time axis (0,c0). The
points can be interpreted as times of occurrence of an event,
€.g8., the failure of a machine. The intensity (or hazard func-
tion) at time t is a number Q, such that the probability of
an event.in the interval (t,t+dt) conditioned by all the past
equals Qtdt. We adopt the general approach to intensities as
presented in [2], Chapters 18 and 19, but without requiring
from the reader the knowledge of that book. For two point
proceases we express the logarithmic information with aid of
the ratio of intensities. Then we obtain sufficient condi-
tions for the absolute continuity of their probability dis-

tributions. For the properties of information we refer to [1].
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2, The probability distribution of a point process
is a measure on the space (S, Yy ). S is the set of all
non-decreasing sequences s = {8;,8,,...% of positive num-
bers inclusively oo with the following properties. i)
}Li_glw s, =00 . ii) g < 8,410 Whenever 8, < c© . We intro-
duce

Tn(8) =8, n=1,2,..., Ty(s8) =0, 8€8,

oo

Ny(®) =, Zy 1 gq gty 1EL0,00), s€S.
The counting process N provides a complete description of
the random point s, Thus, N.~s,

Next we define an increasing system of 6 -algebras

(1) ¥,=6a{N,,,ucl0,0)}, telo,c01.

uA t is min(u,t). Definition ( 1 ) can be generalized. For

6 a stopping time with respect to ¥ we denote

36' = G’Q{Nu/\g ,ue[O,oo)} .

let us recall the Galmarino Lemma on stopping times.
Lemma 1 (A.R. Galmarino). A non-negative random vari-
able 6 on (S,Y¥,) is a stopping time if and only if for

t elo,m), 8,8°¢ S,

N (8) = Ny(s"), ukt, 6(8)&t = 6(s) = 6(s").

Two consequences of lLemma 1 will be used in the sequel.
Lemma 2. Let 6 be a stopping time, 6 (8)~ &(N.),
Then

(2) 6(N,) = 6(N,,g), ses.
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Proof. Take s€ S. Let s° be such that N., ¢ (8) =
= N.(s"). Then N (s) = N (s"), u% &(s). Hence, 6 (s) =

= 6(s”), which is the same as ( 2 ). O
Lemma 3 ([2]), Let & be a stopping time. Then
(3) AT, = 6 (Nepwy_1) A®py 0 = 1,2,...
Proof. If 6 (N.)< v, then from Lemma 1 follows
& (Neax,_3) = 6(N.). Consequently, ( 3 ) holds. If 6(N.)z

zZT,, then &(Noaw_,)< v, is impossible, because this
would imply & (N,) = S(N’/\"‘n-l)‘ Again, ( 3 ) holds. O

3. Let two probability measures P°,P1 be defined on

(S,‘:foo) by means of conditional distribution functions
(4)  FY(6),Fh(t/t))yeus Fa(t/teneyty 1)yene, 1 = 0,1,
That is,
Fp(t/ %yeeny ¥ y) = PH(YLE /g 0, Ty ), tel0,000,
n=1,2,...,i = 0,1,

We assume that functions ( 4 ) are continuous on [0O,00).

We define on S cumulative intensities (or compensators)

v AR W/ g, )

T,
n-1
’ ""'n--l‘= t <Tps

(5) Al =al _
1'!.—1 1- F:;(u/'l:l,..., ’Cn_l)

+
Th-1

n=1,2,..., A> = 0.

The integrand on the right-hand side is a generalization of
the hazard function known from renewal theory.

Further we assume that
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1
AFL (/8,00 eyt )

1
l-Fn (t/tl’ eee ,tn_l)

= Bp(t/tyyeeesty 1)

(o]
. an(t/tl,...,tn_l)

O
1-Fp(t/ty,e00,ty 1)

, telO,00).

0 £ £n< 0 is the Radon-Nikodym density of the measures on
[0,00) specified by the differentials with the convention
000 = 0/0 = O, Thus, it is posseible to define the intensi-

ty ratio
() Ly = L/ ®eeey Ty )y T 15t<®, n=1,2,...

We have

1_ ¢t o
Ay = j’o Ldad, telo,m).

The mathematical expectation under P;l will be denoted by Ei.
Finally we introduce the information measure. Let &

be a stopping time. We denote by Ig (Pl,Poi the information

in Pt with respect to P° on Ss o L.e., if Pr< P° on s

and Zg 1is the corresponding Radon-Nikodym density, then

1
Ig (®1,P°) = E%g log Zg = B' log Zg , Zg = SE-
a0 Mg

£ P12 P° does not hold, then Ig (Pl,Po) = .

4. Next we give an auxiliary result. It concerms point
processes with at most one event. Let two probability distri-
butione on [ 0,001 have distribution functions F°,F1, res-
pectively. Let F°,F1 be continuous on L[0,00), FO(0) = 0 =

= Fl(o). Define measures on [0,00) by the relatiom
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s i
(8) dal(t) = -g-LF-i_:-%T, tGEO’CU), is= 0;1.

Further let

9) dal(t) = £(1)aa(t), telo,m),

where 0 £ £L(t)<c0 , tel0,0).
For the information we get the following formula,
Lemma 4.

t-
(10) 1(F,F°) = j:’jo (1+ £ (w)1log £ (u)- £ (u))da®(u)ar(t).

Proof. The integral in ( 10 ) exists, since

1+ x logx-x20, xel0,00), Consider first the case

Fl(eo-)<1, F°(c0-) = 1. Then obviously I(FL,F°) = oo, Mo-

reover,
- ° _ o1 0= o
jo £(u)da (u) = _{) da~(u)< o , fo da®(u)

U]
8

The right-hand side of ( 10 ) is not less than

(1 = Freo-)( [T 1-e"Haa’w) - [Taalw)) = @ .

Hence, ( 10 ) holds.

For the rest of the proof we may assume
1 )
(11) F(o-)<1=>F (0-)<1.

Set £Cw0) =1, From ( 8 7,( 9 ),( 11 ) follows that the den-

sity of P with respect to F° is

1
) L () =lzEn) g, telo,w]
dF 1-F(t-)
Consequently,
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(13) I(FL,F%) = fo‘” log ( i—‘—;’%i(f:% 2 (t))art(t).

The subsequent transformations lead from the right-hand
side of ( 10 ) to that of ( 13 ) and vice versa. Their feasi-

bility will be discussed afterwards.
[7 07 (v £ (w)10g £ w)- £ (w)as® (wart(¢) =
1t~ .0 t-
e )y gply) o
0

1-F°(u) 1-F (u)

as v [“log 2w 1E® g (u)ar(u) =
0 1-F" (u)

@ o 1 1
=j° (=10g (1-F°(t=))+ log(1=-F (t=))+log £(t))aF(t) =

= [ProgEEL=) g (e)rartiey.
0 1-F(t=)

We have used ( 12 ) and Fubini’s Theorem.

If Fr(w-)< 1, then from the finiteness of either the
left or the right-hand side of ( 1 ) follows the finiteness
of all integrals occurring in ( 14 )., Thus, for this case,

1, denote

1%.

( 10 ) is demonstrated. If Fl(uo—)

T=inf{it: Fi(z)

Define for n = 1,2,...
Bpl(4) = Pt (F-n"DA n), tel0,00), PFi(eo) = 1,
i=o0,1.

Apply ( 10 ) to I(nFl,nFo), and let n—> c© , From the con-

tinuity of information, ( 10 ) follows. O
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5. Theorem 1. Let 6 be a stopping time. Then
1 0y _ ol 8- o
(15) Ig (P7,P°) = B [© (1+Lylog Ly-Ly)dAg.
Proof. Denote
K[x1=1+ xlogx - x, xel0,m).

1 50 . . 1l 50
Igazn(P7,P") expressed with aid of Igaw,_(P7,P ) and of the
conditional information contained in the event at time °
'tnée‘ equals

1 1
Tonen (B 0P%) = Tgary o (P7,P°) +

1 1 0
Mk TP _1<m}I‘A,,,n(P Clenrg_q) sP (ol S oAy 1))+

ey, BL( + ) (P )
%{e‘ﬁn-l} %{6=z’n_1=m} ICA'?ﬁn . °""b’n-l ’

P°( S enr, 1)), 0 = 1,2,.0

The last term is zero, since the conditional information va-
nishes.

To deal with the before last term, we note that by
Lemma 3

EAmy = 6Nipny )4 Tp = 2 ( Tyyeeey ¥ 1) A Ty

where z,(t,...,t, ;) is a Borel function of ty,..c,t, ;¢

n-1
Thus, given 6 2 T a1t Tireeesr Tpoy< © the conditional

distribution is
-i _
Fp(t/ ®qyeee, 'tn_l) = F}l(t A2 Tyyeee, Ty 1)/ Tyseee
evey Tp_qy)y telO,0),

Fo(e6/ ¥ ,eee, ¥y y) =1, i=0,1,
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By Lemma 4, the conditional information equals

w0 $AZ,- AFR(U/ Tyyeney Ty q)
fo j‘o K[,en(u/ ’t'l,-a-, ’C'n_l)] .

o
1-Fou/Tyseeey Ty )

1 _ ol d'o\t‘“- o
cAFa(t/ ¥ qyeee, Tpq) = B {L 1 KT 1aAD [ ®q,00e, T o3
-

Consequently, ( 16 ) implies

T

K[L,)43, n = 1,2,...,

A
(®1,p°) = (p1,p°)+EL
IG’/\-vn ! Ia'.vzn_l ’ é‘f/\‘!,w_,,
or

(-7
1,0y o @l m 0 =
Ic'mn“’ ,P°) =E fo K[L,J4A0, n = 1,2,...

From here, ( 15 ) follows letting n —» c0 , and using the

continuity of information. O

Theorem 1 yields the following sufficient condition for

1, p°,

P

Theorem 2, Let
an P [Tl log L-L)aA<0) = 1.

Then P22 P°,
Proof. Let ( 17 ) hold. Define

€, = inf{ t:fot K[%JMSZn} ,h=1,2,...
By Theorem 1,
10 O
1, (#1,%) = zlfo K[LJaAO% n.
Hence,

(18) P'3 P° on ‘j’s.n, n=1,2,...
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Let B € ¥, , P°(B) = 0. We have

PL(®)¢ PI(N., € B, &, =) + Pl(6 <),
n
Further,

= p° 0o = = po0
0=P(B)2P (N.eB, &, =) = P (N.Aqne B, G’n'w)-
According to Lemma 2, &, = &,(N,,, ), and hence
n

{N.Mne B, 6, = oo}eff,,n

Thus, with regard to ( 18 ),
1 -
PUN., g € B, &, =) = 0.
We conclude that PL(B)& P'( & < ). ( 17 ) implies
1 =
1 Pl(e <) =0,
m-» co

i.e., PL(B) = 0. This establishes P'2 P°, g

6. Assume that in ( 6 )
(19) ,en(t/tl,...,tnb 0, tel0,0), n =1,2,,...

The hypotheses are then symmetrical with respect to P° and

P‘L, and
t .
A = jo IhldA‘];, tel0,00),
By Theorem 1,
° 6~ r1~liaal = g0 [°°
Ig (#°,P1) = 27 kighlaay = B [ (Ly-log Ly-1)aAl.
Further,

(1+x log x-x) + (x-log x -1) = (x~1)log x, xe[ 0,00),
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where the expressions in the brackets on the left-hand side
are non-negative. Theorem 2 has the following corollary.

Corollary 1. Let ( 19 ) hold together with

i, r@- - s o

PHO [ (1-Ly) log Ly dAP <) =1, i =0,1,
then P~ PO,

Example 1. Under Pl, let N be the pure birth Markov

process with transition rates qQ, from n-1 ton, n = 1,2,,...
Under P°, let N be the Poisson process with intensity Qe Con-

dition ( 17 ) of Theorem 2 is

l (]
(20) P (m2=24 Klay/9,1 qp( Ty~ vy 4)<0) = 1.
( 20 ) holds if and only if

PLe0) = 3
o > 1, (P ,P°) =m2=,l ((g4/9y,/-108 (qo/qn) - 1),

Example 2, Let Pl be the probability distribution of
a doubly stochastic Poisson process N defined on a probabili-
ty space (0 ,A,P). Let £Q;,tZ O¢be the intemsity of N. Fur-
ther, let P° be the probability distribution of a Poisson
process with variable intensity q(t)>0, t€[0,00). Then
aag = q(t)at, ama

(21) Ly(N) = E{Qy|F ,uel0,t)} /q(t), tel0,00).

(See {21 for the proof of ( 21 )). From Jensen’s inequality
follows

1 o - -4 — @® o -
I,(P ,P%) = B [ K(L(M)] q(t)at ¢ [~ EE{K [Q /a(t)]|F,

uel0,t)} q(t)at = jo"" E(q(t)+Q, log (Q,/q(t)) - Q,)dt.
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Consequently, the finiteness of the last integral is suffi-
cient for Pl-é P°.
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