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COMMENTATIONES IIATHEMATICAE UNIVERSITATIS CAROLINAE 

18,3 (1977) 

RING VARIETIES CLOSED UNDER IDEAL SUMS 

B.J. GARDNER, Vancouver 

Abstract: A variety 1/ of rings or algebras is S-clo­
sed if i + J € If whenever I and J are ideals of a ring or 
algebra A and both I and J e If . A variety of associative 
algebras over a field is S-closed if and only if it is clo­
sed under extensions. A non-trivial S-closed variety If of 
associative rings can contain no rings with torsion-free 
additive groups and consequently 1f is determined by subva-
rieties ? D = U e If | The additive group of A is p-pri-

mary } where p is prime. For almost all p, If » iO) ; ot­
herwise, either 1fn is extension-closed or 'ZF_ is between 

P tm/21 m p 

the varieties defined by p ' x = 0, p x ^ O for some posi­
tive integer m. 

Key words: Variety, associative ring. 

AMS: 08A15, 16A38 Ref. 2.: 2.725.2, 2.723.23 

Introduction. We shall call a variety V of rings or 

algebras S-closed if whenever I, J are ideals of a ring or 

algebra A, with I, J e V , we also have I + J € 1f • Exam­

ples of S-closed varieties are the extension-closed varie­

ties, those varieties If with the property that if a ring 

or algebra A has an ideal J with J and A/J e 1f , then A e 

e If • (Of course, in both of these definitions everything 

is assumed to be happening in some prescribed "universal" 

variety It and, more precisely , the varieties in which we 

are interested are the subvarieties of QJL which have the 

properties relative to 16 .) For if V is extension-closed 
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and I , J are two ideals of a ring or algebra A, then 

(I + J ) / J 3 - I / I o J, so I + J c V i f I , J 6 It . 

Note that an S-closed variety V i s c losed under for ­

mation of arbitrary ideal sums. For i f - C l ^ | A e A J i s a 

s e t of ideals from V and a , , . . . , a n € S I A , then-Ca-^,... 

. . . , a n } c I^ + . . . + IJJ e f for some & l f . . . , &n e A . 
1 n 

Thus the subring generated by -Ca1,...,anJ is in V • This 

being so for any finite set, we have S L 6 f , 

Essentially we shall be concerned with associative rings 

and algebras. In § 1 we show that for algebras over a field, 

a variety is S-closed if and only if it is extension-closed. 

The situation is not as simple for rings. For instance, for 

any positive integer Z , the variety defined by the identi­

ty Z x = 0 is clearly S-closed. Other examples can be ob­

tained by combining varieties like the one just mentioned 

with extension-closed varieties. Whether or not all S-closed 

varieties arise in this way is still unknown, but we do show 

that for any non-trivial S-closed variety 1T f there are fi­

nitely many primes Px*#*»»Pk 8 u c n t n a t e v e ry ring in V ia 

a direct sum of rings whose characteristics are powers of 

Pxt***»Pfct &**£ for each i, either there are integers 1 -= 

6 t i / 2 ] ^ n ^ M such that Wp * * A. c V \ A has a pj-primary 

additive group } is between the varieties defined by p?x * 0 

and p?x = 0, or 1 r is an extension-closed variety* 

We shall use the following notation: A is the additi­

ve group of a ring or algebra Af A the zeroring (or zero-

algebra) on A"1" (i.e. the ring or algebra with all product* 

zero); for elements u-p...,*^ of a ring, <ulf...fu|l> is 
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the subring they generate. 

The group theory analogue of the problem treated here 

was solved by T.S. Shores C7 3 : there are no non-trivial va­

rieties of groups closed under normal products. The author 

is grateful to Professor Shores for calling his attention 

to this result and to the associated question for ring vari­

eties. 

!• The Algebra Case. Let SI be a commutative ring 

with identity. We first consider S-closed varieties of il -

algebras containing il . 

Proposition 1.1. If il belongs to an S-closed vari­

ety *\y of il -algebras. then 1E* contains all il -algebras• 

Proof. Consider the algebra Tn(il) of strictly lower 

triangular nx n matrices over il for a fixed integer n>l. 

For k » 1,2,..., n - 1, let 

Ik = { ( a . y J c T . ^ U l ) 1 aij * 0 if i< k + 1 or j>k } . 

The I-g are depicted in the following diagram 

Each Ik is an ideal of Tn(Jl) and Ik * 0 for each kf so, by 

assumption, V contains I-j + Ig +•..• 1.^ * TB(il). This 
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ie so for every value of n, so TT4 T
n(il) e V • Then if 

V is not the class of all algebras, 7TT (H) satisfies 

a polynomial identity and hence (cf. 161, pp# 181-182) a ho­

mogeneous multilinear identity S a^ " % M ) • • • % / \ = 0 whe­

re 6 varies ovei1 some set of permutations of -il,2,...,m } 

and each a € .QA-iCH . Now each Tn(il) 8atisfies this iden­

tity; in particular this is so when n> m. For such an n , 

consider the matrices E2i»E32»#**»]Ein m-l € T
n ^ ^ f where E ^ 

has 1 in the (i,j) position and zeros elsewhere. We have 

Em,m-1 Em-l,m-2 ••• E32E21 = Eml' w h i l e t h e Pro<*uct t a k e n 

in any other order is zero. But then a^ E - = 0 for some 

& , which clearly is impo3sible. Thus there is no proper 

identity satisfied by V , i.e. If contains all algebras.// 

The case where il is a field is worthy of separate men­

tion. 

Proposition 1.2. If il is a field and V is an S-clo-

sed variety of il -algebras. then V is either 

(i) -CO}, 

(iD the class of all algebras. or 

(iii) an extension-closed variety. 

Hence if il is infinite, 1T must be (i) or (ii) and if il 

is finite« V is (i),(ii) or the variety generated by a fini­

te set of finite extension fields of il • 

Proof. If V is neither (i) nor (ii), then by Proposi­

tion 1.1, il $ V and W therefore contains no algebra 

with a non-zero nilpotent element. That V is extension-clo­

sed can now be proved by analogy with the theorem of E 31 and 

other results quoted in that paper. The final assertion fol­

lows from results in § 2 of Cll . // 
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2. The Ring Case. Throughout this section, It will 

always be an S-elosed variety of rings. We proceed to our 

principal result by a sequence of propositions. Let IT0 * 

» 4 A € 4 r | p A - = 0 § for each prime p. 

Proposition 2.1. If IT 4s i 0 $ for infinitely many 

primes p, then It contains all rings. 

Proof. Note firstly that V- can be viewed as an S-

closed variety of algebras over the field L of p elements, 

so that by Proposition 1.1, Ot contains all rings of cha­

racteristic p if K*° € V . Let P » -ip j Kp° e It } , 

M M p | Vp+<0J , KJ°# Tpi. 

If P is infinite, consider a free ring F on .>r generators. 

3y Proposition 1.1, F/pF e It for each peP. But Q\ pF -* 0, 

so F, as a subdirect product of {F/pF | peP } , is in 1t , 

and therefore IT contains all rings. If, on the other hand, 

M is infinite, then by Corollary 1.2, there is a field 1^ 6 

e 1/ .for each pe M and then TT L e It . The element e 

of TT !.. whose p-component is the identity of 1^ for each p 

is idempotent and has infinite additive order. It follows 

that V contains the ring Z of integers. But then K = 

= qZ/q Z & It for every prime q and so, as before, It con­

tains all rings. // 

Proposition 2.2. If It contains a ring A for which A 

is torsion-free, then It contains all rings. 

Proof. Let A € 1t have torsion-free additive group. 
2 

First suppose there is an aeA with a -* 0#-a. Then 

K*° a? < a > / p < a > 6 It for every prime p, so by Proposi­

tion 2.1, It contains all rings. 
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Now suppose A has no non-zero nilpotent elements. If 

0 4 be A, then <b> has no nil ideals, so neither does 

< b>* , the ring obtained from < b > by the adjunction of 

an identity element in the usual way. But < b>* is a homo-

morphic image of Z Cxi , so < b >* has nil Jacobson radical 

(14 3 , Theorems 2 and 3), whence <b>* , and therefore al­

so < b > , is semiprimitive. We can thus represent <b> as 

a subdirect product of a family 4 D • J i e I ? of primitive 

ringa* Since b has infinite additive order, either 

(i) some D. has characteristic 0, or 

(ii) the D. have infinitely many different characteri­

stics. 

In case (i), let D. have characteristic 0. Then there is a 
J 

division ring A such that either D . ^ Ma( 6 ), the ring of 

m x m matrices over A , for some m, or for every n, D. has 

a subring B n with M n(A) as a homomorphic image. (See H 53, 

pp» 43-44.) In any case, IT contains D>, hence some 1-L(-̂  ) 

and therefore A • But A has a subring ~ Z so as in the 

proof of Proposition 2.1, we see that V contains all rings. 

In case (ii), arguing as for case (i) but using D.'a of va­

rious finite characteristics, we can show that K^ e W fo* 

infinitely many primes p. By Proposition 2.1, V again con­

tains all rings. 

Corollary 2.3# If V is not the class of all rings, then 

If consists of torsion rings and the set of orders of ele­

ments of rings in V is finite. 

Proof. If X ^ ^Z***9 ar« infinitely many distinct 

orders, choose, for each k, a ring Ak € V containing an 

element of order Z k» 'Then 1f contains TT Ak, and hence 
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also its (non-zero) torsion-free factor ring, contradicting 

Proposition 2.2. // 

Thus there is a finite set -i p-̂ ,... -P^l of primes, 

and a finite set {r p , , . , r J of positive integers such 

that every ring R has a unique representation 

R » 1..̂  © ... © I^, 

r * * 

where p. *R. = 0 for each i. This of course is true of any 

variety consisting of torsion rings. For such a variety QJL , 

let 
U p = <A € % | A+ is a p-group ? , 

for all primes p. Among the varieties consisting of torsion 

rings, there are the classes -tAj£ A » 0 J for all positi­

ve integers Z . These are clearly S-closed. As mentioned 

in the introduction, 30 are the non-trivial extension-closed 

varieties - the varieties generated by finite sets of finite 

fields. 

We can now state our principal result. 

Theorem 2.4. Let tr be a non-trivial S-closed variety 

of rings. Then ty consists of torsion rings, and those 

V p 4" i 0 } are described by the following conditions. 

(i) If 'jF contains no nilpotent rings, then 1F ia 

the variety generated by a finite set of finite fields. 

(ii) If ty contains a nilpotent ring, there exiat 

positive integers m(p), n(p) such that 

(1) 4 A | p n ( p ) A « 0 J £ 1 r p £ < A | p m ( p ) A * 0}; 

(2) p n ( p ) A = 0 for every A € Tp with A2 = 0; 

(3 ) [ t a ( p ) / 2 ] 6 n 6 i . 
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On the other hand, a variety % conaisting of toraion rings 

is S-cloaed if thoae 1t_ 4= i 0 \ are described by (i) and 

(iii) If % contains a nilpotent ring, then there 

exists a positive integer n(p) such that 11 * iA | pn^P' A= 

» 0} . 

Proof. If V is S-closed, then by Corollary 2.3f V 

consiata of torsion rings. Clearly each V is an S-closed 

variety. If t^-fr-tO* and there are no nilpotent rings in 

If-., then Vn is generated by a finite set of finite p p 

fields (cf. £33). If there are nilpotent rings in ^*Dt *
e* 

n(p) s Max 4 k | 1f containa a ring A with A = 0 and p A * 
= 0 * p k - 1 A } , 

k m(p) = Max -Ck | V containa a ring A with p A = 0 ^ 

í Pk_1A 5 . 

,п(p) Let i l be the ring of integers modulo p v p ; . Then 

Orpn-CA| p n ( p ) A = 0 J 

can be viewed as an S-closed variety of Jl -algebras, con­

taining i l and therefore, by Propoaition 1.1, a l l -Q- - f t l ~ 

gebraa. Hence 

U l P n ( p ) A « O i S 1r p . Also, ^pS-CAjp111^) A , 01. 

Let R be a ring in V with p m ( p ) R = 0%pm (P )- 1B. Let 

"(m(p) + l)/2 i f m(p) i 8 odd 

t « C(ia(p) - D/21 + 1 =-j 

. m(p)/2 i f aCp) i s even 

Then (p tR)2c pm(P>R * 0. Since P*R i s in V , we haire 

pn(p) ( p t B ) M Q^ 8 o n ( p ) + t 2 , m ( p ) f i # e # 
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f
(m(p) - l)/2 if m(p) is odd 

m(p)/2 if m(p) is even 

=- Cm(p)/2 3 . 

The final assertion of the theorem is clear from our 

remarks above. // 

3. Non-associative Possibilites. We shall not pursue 

in detail the subject of S-closed varieties of non-associa­

tive rings, but merely make two observations. Firstly it is 

clear that any variety - t A | X A * O J of non-associative 

rings is an S-variety. Secondly, among the S-closed varieti­

es of associative rings we have the class of boolean rings, 

this being the variety generated by Kg and being extension-

closed. We have noted elsewhere f2] that the variety of non-

2 

associative rings defined by the identity x = x is not ex­

tension-closed. We now present an example to show that this 

variety is not S-closed, either. 

Example 3.1. Let A be an algebra over Kg with basis 

4u,v,wJ and multiplication table 

U v w 

U U 0 0 

V 0 v 0 

W V 0 w 

Then < v,w > -S K2 ® Kg & < u,v > , so < u,v > and < v,w > 

satisfy x - x; they are also ideals of A. But <u,v> • 
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+ < u,w > * < u$v,w > = A, while (u + v + w )
2 = u 2 + v2 + 

+ wu + w = u + v + v + w = u + w, so A doesn't satisfy 

x = X. 
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