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COMMBNTATIONES MATHEMATICAE UNIVERSITATIS CAKOLINAE 

18,3 (1977) 

A NOT! ON DIHECT-PROIXJCT .DECOMPOSITIONS 

JiM VINÀBEK, Praha 

Abstract: An example of a covariant functor P suph that 
the category S(F) does not admit the algebraic recognition 
of products (see C41) is constructed. 

Key words: Algebraic recognition of products, n-ary 
operation, set-functor• 

AMS: Primary 18U0 Ref. 2.: 2.726.23 

1. G.M. Kelly and A. Pultr have defined a condition of 

the algebraic recognition of products in categories (AHP, see 

C43). Roughly speaking, in categories admitting ARP an object 

A can be non-trivially decomposed into a product of objects 

A^,#.#fA iff there exists a non-trivial n-ary operation e 

on A satisfying certain conditions. (For n « 2, and 

Z po A » A projections, the conditions mentioned are the 

following: eA = 1, e(exe) - e(p0x. p-̂ ) where A is a dia­

gonal map.) 

In [43, large classes of categories admitting ARP are 

presented. An interesting question is to study this problem 
A 

in categories F defined as follows (cf. E23fL33): consider a 

functor F: A—-* Set, define F as a category whose objects 

are all the pairs (A,a) where Ac obj A , acFA, and whose 

morphisms ( A , a ) — • (Bfb) are maps f: A — > B satisfying 
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f.^ a c b. (The notation f*. (f * resp.) is used for the di­

rect- (inverse- resp.) iffl&ge function.) 

2. Thus, for A = Set (Set o p
 resp.), F (F

o p
 resp.) co­

incides with the S(F) from (e.g.) 1 2 } and T3i. 

While, by C4U, S(F) with a contravariant F always ad­

mits AHP, for the covariant case only a class of the F (in­

cluding the basic "constructive" set functors and closed un­

der basic operations) with S(F) admitting AHP is given. 

We are going to present a covariant functor F: S e t — > 

— > Set such that in S(F) AHP is not admitted. For /I a ca­

tegory admitting AHP (e.g. A = Se t ) , F admits AHP for n * 2 

iff the following condition holds: 

2 ^ J^'o (
ІA ,A> -** <-o* V =-=--* V

 A
l»

 A
o*

 A
l ^ 

°'
 a
 Pl зţj 

A l 

be product diagrams in A then for every r c F ( A 0 x A-,): 

F(^rox Jf j)* (F(pQ)* (r)nF(p1)* (r))c r implies 

F(;7T0)* F C ^ ) ^ MnFifT^* F C ^ ) * (r)c r. 

For a set X put 

FX =-( YcX | card Y * 2 }u I O x J 

and for a mapping f: X — > X ' define F(f) by putting 

F(f)(Y) « f* (Y) if card f* (Y) = 2, 

F(f)(Y) « 0 X / if card f* (Y) = 1, 

F(f)(Ox) = 0X, . 

(Thus, F is a factorfunctor of Horn (2,-) where all the con­

stant maps of Horn (2,X) are factorized to a point of FX.) 
A 

Proposition. The F just defined does not admit AHP. 
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Proof. Put AQ = A, s 2, and consider the subset r = 

= -H(0 ,0 ) , (0 , l )H <̂  F ( 2 * 2 ) # Then 

F(pQ)* (r) ={ - { (0 ,0 ,a ,b ) > (o f l , c f d)} | a,b fc,d ei 0,1}? , 

F ( P l ) * (r) =-(<(xJy,0,0)>( t t >v lO f l )} | x,y,u,v € { 0 , l H , 

F ( p 0 ) M r ) n P ( p / (r) = {.{ (0 ,0 ,0 ,0 ) , (0 ,1 ,0 ,1 )1 , { (0 ,0 ,0 ,1) , 

(o , i ,o ,o)n , 
F(^r0xcrr1)^ (F(p0)* (r) 0F(Px)* (r)) = r. 

On the other hand, $*( ^r0)^ (r) = i02 ? , 

F(tr0)* F( *r0)M (r) = 44(0,0),(Ofl)} , i (1,0),(1,1)} , 02x2i, 

F(^r1)^ (r) ={-CO,lH f 

F(3f1)* F( jr-^ (r) = « (o,0),(0,1)1, -f (1,0), (1,1)}, i(0,0)f 

(i,DJf i(i,o)f(o,i)H , 

F(rrf0)*
< F(^r0)^ (r)o F t ^ F( o t ^ (r) = -U (0,0),(0,1) } , 

{(lfO)f(lfl)}} <t r. 

3. Proving ARP property for the S(F) with concrete F's 

(representable functors, power-set functors, products and 

sums of these etc.) one usually encounters the situation 

with F satisfying the following formally stronger condition: 

(2^ A ) for any u,vfw!eF(A x A-̂ ) such that F(ar0)(u) = 
o* 1 

= F(jr0)(v)f F(drr1)(u) = F(JT1)(W) there exists a 

z€F((A0x Ax)
2) such that F(pQ)(z) » vf F(p1)(z) « wf 

F(dr0x ̂ T1)(z) = u. 

It is still an open problem whether this is equivalent with 

ARP, i.e., whether 

v Ao»Ai ' I A ^ A ^ -* v VAi ih,,^-
We will conclude this note by showing at least that the imp-
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lieation 

(1. A )=>(2A A ) 

with particular A0, A-̂  (namely already with AQ = A-, = 2) 

does not hold* 

For a set X put 

GX = -i(Y,i) | IcX, card Y = 4, i e { 0,1 } } u { 0X } 

and for a mapping f: X — > x' define G(f): G(X)—> G(X') by 

putting 

G(f)(Y,i) * (f^ (Y),i) if card f* (Y ) = 4, 

G(f)(Y,i) = 0 r if card f* (Y)<4t 

G(f)(0X) « 0X/ . 

Proposition. Cl2 2^
 nolda while (22 2) does not. 

Proof, (a) Let r = 0. Then G( <rr )* &(&„)* (r) o 

n G(^r1)* G(7r1)4; (r) = 0. 

(b) Let 0=#r cG(2x 2 ) \ { 0 2 x 2 ̂  • *e can suppose, with*-

out loss of generality, that (2x2,0)e r. Then y = 

« (4(0,0,0,0),(0,1,1,0),(1,0,0,1),(1,1,1,1)} ,0) 6 

€ G(pQ)* (r)nG(Pl)* (r) while G( arQx or 1) (y) » 0 ^ £ r. 

(c) Let 0 * r c G ( 2 x 2 ) \ {(2*2,1)} , i = 0 or i « 1. 

According to (b) we can suppose that $2x2 € r # ®*en * s 

=- ( 4. (0,0,0,0), (0,0,1,1), (1,1,0,0), (1,1,1,1) } ,i) 6 

€ G(pQ)* (r)nG(p1)* (r) but G( srrQx *rx) (t) » (2x2,i)# r. 

(d) Let r » G(2x2)# Then G( ̂ r Q)* G(^rQ)^ (r) n 

n G ( ^ ) * GCor-^* (r) » r. 

According to (a) - (d) (12 2) nolds. 

(e) Put u * v = ( 2 x 2 , 0 ) , w * (2x 2,1). Then G( jr0)(u)= 

• G(^r1)(u) * G(ar0)(v) * G(t7r1)(w) « 0 2 but 
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G(pQ)* (•)nGCp1)* (w) = 0 and therefore (£2,2*
 d o e s n o t 

hold. 
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