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REMARKS ON PERIODIC SOLVABILITY OF NONLINEAR
ORDINARY DIFFERENTIAL EQUATIONS

Milan KONECNY, Ostrava

Abstract: We prove the existence of periodic solutions for
nonlinear ordinary differential equations of the Liénard type under
the various conditions upon the nonlinear part of the considered
differential operator.

Key words: Nonlinear ordinary differential equations ,periodic
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1. Introduction. Let n be a positive integer and let T > O.
Denote C,';‘ the (Banach) space of all n - times continuously
differentiable and T - periodic functions defined on the real

line R with the norm

“u”C;\‘a Z max lu(i)(x)‘ o

i= Y0 xX€R

The following theorem is proved in [1]

In the sequel k denat \ a positive integer.

Theorem 1. Let By ey e\2km1 be real numbers such
that
(2) (-2) ® - 2€ O
for j = 1, ..... , k=1. Let f and g be continuous real valued

functions,

(2) 2B [ ()] = M < oo
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Suppose that there exists r >0 such that

g (§)§>0, ger ,|f|>r
or
g (§)§<o, §er , {§I>r .
Then for arbitrary yec,‘; such that

T
@ [ria-o

o

there exists ueci\k verifying the Liénard equation

@ -0 P ra, WDt e, ul)+E () )ulxeun) =v(x) -
Moreover, arbitrary solution ueC%;f satisfies

=) 4] o <

where 1
2

-k
f=rt3 212 (2m) (M-'-”y”co)

T

From this result it immediately follows :

Theorem 2. Let f, g : R—>R be continuous functions,

o

suppose (1), (2). Then for arbitrary y & Cp with
T
(6) limsup g(§)<-%‘,—j v (t) dt<1liminf g(g)
s,—,-to o S—‘)Q”
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there exists at least one solution u & C?rk of (4).

Moreover, arbitrary solution u & Cz,;f satisfies (5) with

1
- am— -k
3 ~ ~
X\sr1+3 T2(2‘J'C) (§:p,g ({)"“yuco)
where

() =25 - 3 )v(t)at,

081

T
V(x)=vy(x) -4 jy(t)dh
°

and for r170 it is

g (f>o0 it |§l>ry -

Theorem 3. Assume (1). Let f, g: R —> R be continuous

and suppose that there exist finite limits
lim g (§) =g (+=) ., lim g (§) = 2 ( -*) .
;.,4-0 g_,_.o

Moreover, suppose

(?) min {g(-‘),g (,-)}( g ()< max {g (-®°),g(+ )}

for each gé R.

Then the equation (4) has at least one T-periodic solution for

yéc?r if and only if
T

(8) min {g(-“), I3 (0“’)}4-%- y(x)d x< max {g (=), g (t= )}.
o
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For the proof of Theorem 1 the following property (F) of the

differential equation (4) is essential:

(F) I ye C; , then the set of all T - periodic solutions

of the equation (4) is a bounded subset of the space C; .

Now lets prove that the (F) is in a certain sense
necessary and sufficient for the validity of the assertion of

Theorem 3.

Thegrem 4. Let f , g : R—>R be continuous.

Suppose (2) and denote

é =sup g (f) , G = inf g (§),
geR ;eR

qm o - )
j =} ye C,.. ; there exists a T-periodic solution of (4)}

T
T
m-{yecy: 9<-,%Sy(x)dx<(—§},
(o]
T
n-{yécg; Eé%j y(x)dxéa}
o

Assume that the sets g_1( G), g—l( G) do not

contain a nondegenerated interval.

Suppose that the differential equation (4) has the proper -

ty (F).

i ) Then there exist finite Limits g(+*?) , g (-2) and it is
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(PN e {5, 9} .

i) If (?ﬂn)\m = {a} , then we have
g (+®) = G or g(-%)= G .
iii) 1t (Pnyoyn - {G} then we have
g (+©) = G or g (-%) = G .
(iv) It (PAYONML = ¢, then it is

g(-w) =G, g9 =G

£(-%) < g (<e =), ger

or

g(-0) =G, g2 = G

g (+) < g (§)<e (-%) ,{<€R

Proof: i) Suppose that g (=) does not exist. Denote
A = limsup g(p , B = liminf g (g)
S—‘)fco 8_4,4.‘:0

Then B <A, and there exists a sequence
oo
{gn}n -1 x]{?oogn =+4% guch that

e(§,) - A;B— .

A+B

Thus 3 , and the constant functions gn are the

T - periodic solutions of (4) .
This is in contradiction with the property ( F ).

Analogously we prove the existence of g (- ).
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Let ye(@(\n)\mand let, for example,

1

- vy(x)dx=G.

0+

€ c?® s a solution of (4), then we have

I.fuo T

T
[(a-ewu(x),ax-0
(o]

and since g-l( C—:‘r) does not contain a nondegenerated interval,

ug is a constant function, thus y = G .

The proofs of parts (ii) - (iv) are the consequences of

the part (i) .

From the Theorems 3 and 4 it immediately follows :

Theorem 5. Suppose that f , g : R—R are the
s/

continuous functions, let g be bounded and let g =~ ( G ) ,

g—l ( G ) do not contain a non degenerated interval.

Assume (1).

Then the equation (4) has the property (F) and

?-mu and only if there exist g (+*) , g (~%) and if ( 7)

is fulfilled .

In this note we shall deal with the T -periodic solvability
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of (4) in the case of nonexistence of Limits g (#®), g (-0 ) .

2. Expansive nonlinearities. The following defihition is a

generalization of the so-called expansive function introduced in[S].

Definition. Let g : R~—>R be a nontrivial bounded conti-

nuous function. For p, q such that

() int g (§)<a<p<sup g (f)
f€R {eR
we put
My g - [de RIx, mye R, O¢m <M, such that for

§€<”ll\”12> it is g(;)}p and for

§ed =My =M itis g (§)<a and dsqz-"il} v

v} {d GR.aql,»\ze R, Ogm <M, such that for

§€<411‘~12> it is g (§)<aq and for
§€< "'12,-%1) it is g(§)>p and dSQz—N]_l}.

D enote

= M .
p,ql &) sup M, o

1t Ep q( g ) =%Qfor each p,q from (9), then g is called the

expansive function.
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Examples. (i) Ep,q (sin) = min {’J[—z[arcsin plX-2jarcsin gl}

for each -1 < qg& p<L1

(ii) The function
2k-1
2k+1
g: § —> sin ( g )
k is a positive integer is expansive .
)
(iii) The function

2k -1

g:;b—i arctg 52. sin ( {ET(*J'

is expansive.

The main result of this sectionis the following.

Theorem 6. Suppose (1) and let f,g: R—>»R be conti-
nuous, g bounded. Then the equation (4) has at least one

T - periodic solution if
T
a) y ec? q<—}—jy(x)dx<p
T ’ ~ T ~
o

1
- -k
B) 3 “r%(2%) (suple(§)- 5
sGR

3

T
V() dxl#ﬂy-%IY(X)dxu 9 EF,,q(s) .
o o Cr

Proof. Suppose

g (§)>p for §€ELImy,Mmy)

g (§)<a  for §EL&, -
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_% -k T
3

(e]
Define the function g by

Pq
gy e i
gpq i §— g, q\f) = 8l-7y if

g4\ =8l My i

and

Obvi 1 « 00
viously gp )P

T
T(2x) (;:;lg(f )- % j v( X)dxl‘i-“}""cl[\"c! y(x‘)dx“cg)mz-ql.

EE(’nzv %2> '
§ € ("ol""lz) ,

§€ {mp=) -

gp’q(-°°)<q .

According to Theorem 2 there exists at least one T - periodic

solution ug of the equation

(10) -(—1)ku(2k)(x)<r ai.;( Zk"J(;()-\- et a2k_1u'(x)ﬂ(u(x)) ul(xh. gp'q(u(x))=y(x} .

Moreover, from (5) it follows

1

T
1

- -k
2.2
l|u°||c°<q1+3 T (21) (?:PR‘S(f)'TéY(x)dxl*

T

T
+“y"%jy(x)dx "CO )<n11‘ ”12_,'11 "”12 ¢
T

(¢}

From this we have

gug(x)) =g, (u(x)) , x €R

and thus the function ug

As
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a corollary we obtain immediately :



Theorem ?. Suppose (1) and let f,g : R—>R be continuous

and let g be expansive.

Then mcf-)c J/Z

-1 -1
If, moreover, the sets g (G), g (G) are non empty and do not

contain nondegenerated intervals then

quU{G, c_}}
-1 _ -1
If the sets g (G), g (G) are empty then

P -

3. Mathematical pendulum equation. From the previous

section it follows that the equation

k-

2k+

N
=

[N

u"(x)+ sin (u

(x)" =y (x)

possesses at least one T -periodic solution if and only if

T
yec;, —1(—,—]]}—Sy(x)dx<1 or vy =t 1
o

Now we shall consider the equation

(11) u(x)¥glu(x))=y(x),
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where g is a T-periodic continuous function, The model for such
equation is
(12) u' (x)tsinu(x)= £(x)

which has at least one T -periodic solution, provided there

exists pé&( O,1) such that

T
—p‘é—%JY(X)dxép N

o]
and
1 T T
3 2T2(1"' -%lj y(x)dx\d-“y - —,JI'\-S y(x)dx“ co )T~ 2 arcsinp

T

(see Theorem 6 and Example (i) ).

In the sequel lets suppose :

a) géCi’_ ) ‘g’(g)lgl for {€R ,
b) the sets g_l(a), g_l(g) do not contain nondegenerated inter-

vals.

It is obvious to see that

Pa
AN P- {56 ),

o

q)ls unbounded subset of CT f

?ls closed in C; ,
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( the last assertion follows from the fact that we can consider only

such solutions of (11) for which 'u (o )‘4'[') .

Theorem 8. Let Te ( O,x) , yéC; and x_ & R.

If u u, are T -periodic solutions of (11) such that

1
ul(xo)nuz(xo)sc

then ul and u2 coincide on R

Proof, Denote v;( x) = u;( x) - c . Then vie.c,_zp (i=1,2)

satisfy the equation

vi'es+ g(ct+v)=y.

There exists a function § : R — R such that

vy (0-v,(x) = g (et vy(x)) mg (et vy (x)) = 2(§( %)) (vy(x-v,(x))

and, moreover, the function
8(§ () ) (vy(*) =v,(*))

is continuous.

Thus

+7T
o

x
J (vi(x}-vz'(x))z dx = l j (v']'.(x)-vzn(x)) (vl(x)-vz(x))dxlé
x x
o o

x +T
o
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x +T x +T
o f°)
< s “ 2 \45 _ 2, ¢
\l g(g(x)) (vylx) - vz(x)) dx | £ (vl(x) vz(x)) 'S
xo xo
2 xo‘T
T . - 2
é';z l (v}(x)-v%(x)) dx
)

from which it follows that
x+7T '
o

io(vl(x)—vz(x))zdx =0 .

This completes the proof.

Theorem 9. Let Te€( O,%X) and vy ecfl’\ .
Then the Dirichlet problem

u(x)+g(c+u(x)) = y(x), =xe(O,T)
(13)

u(o)=u(T)=0

has a unique solution for arbitrary c €R .

('lhe existence of at least one weak solution is possible to
prove on the basis of the theorem on surjectivity of pseudomono-
tone operators - see {2] . By meansdstandard regularity argumen-
ta we obtain that arbitrary weak solution of (13) is classical. The

unicity may be proved in the same way as jn Theorem 8.).
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In the sequel we shall suppose TE€( O,JC). Denote by

uc.y the solution of (13) put

~
uc'y(x)sc*-uc'y(x-kT)

for xe<kT, (k+1)T) ( k is an integer).

It is easy to see that ucy is a T -periodic solution of (11) if
,

and only if

T
glu, (x)) dx = SY(x)dx-
o

Q&1

Define the mapping ? t R x C; -_—> C,‘; by

$ (eovr -y

It is possible to prove that ?( *,*) is continuous .

Let vy € Cf[" be fixed. Define
T
Py re—— [(ee dlew))(max.
e}

Then ?Y : R —>R is continuous T - periodic function. Put

(14) r‘ \y)-én:;‘?y(C) ’

(15) Pev)ymmng (e .

The mapping \—\: C,‘;———y R is upper continuous and

x : C,;—-'ﬁ R is lower continuous .
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The main result is the following theorem the proof of which

follows immediately from the previous considerations.

Theorem 10. Consider the differential equation (11) and let

T e€( 0,x). Then
T
q)= {yécg:x\(y)éSVKX)dxéF(Y)}.
)

where‘1 , Y‘ are defined by the relations (14), (15) .

Remark. It seems that the better characterization of the
73 . .
set for the equation (11) is an open problem up to now.
In this direction it will be interesting to give some further pro-

perties of the functions X‘ ,r‘, e. g- X‘( y) < OSP( v) .
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