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COMMENT AT IONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,3 (1977)

THE SORGENFREY LINE HAS NO CONNECTED COMPACTIFICATION

A. EMERYK and W. KULPA, Katowice

Abstract: We answer the guestion raised by Eric van Do-
uwen during the Conference at Stefanovéd, February 1977, whe-
ther there exists a connected compacfitication of the éorgen-
frey line. We prove that there is no regular Hausdorff connec-
ted space containing the Sorgenfrey line as & dense subspace.
We give an example of Hausdorff connected space containing the
Sorgenfrey line as a dense subspace.
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1. The gtatements of results, Let S be the Sorgenfrey

line, i.e. the set R of reals with the topology generated by
half-open intervals [x,y) of R. If S is a subset of Y, then
let UL x,y) be the greatest open subset of Y such that
Ulx,y)nS = [x,y).

Theorem. There exists no regular space Y such that S is

a dense subspace of Y and

(x) I[x,y)AS =[x,y)# P for each [x,y)cS.

Remarke If Y is a connected space, or if ¥ - S is con-
nected and Y is compact, then the condition (% ) holds.

Corollary l. There exists no regular connected Hausdorff

space containing S as a dense subset.
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Corollary 2. There exists no compactification of S with

a connected remainder.

2. The proofs. We begin from a
Lempg. Let Y be a Hausdorff space containing S as a den-

se subset. If p € [x,y)n (¥ = S), then there exists a q in S
such that x<q&y and such that for each open neighbourhood W
of p the open interval (q - € ,q) intersects W for each € > O.

Proof of Lemmg: Let q = sup {reS: there exists an open
neighbourhood W of p such that WAl x,r) =@ }. Since Y is
Heusdorff, there is an open neighbourhood W of p and there is
a point r in S such that [x,r)AW = @, Therefore q>x, If
q>Y, then there are r>y and an open neighbourhood W of p such
that [x,r)AW = @. This contradicts the fact that p e [ x,y)e
Hence q4y. It remains to show that Wn(q - € ,q) @ for each
€ > 0 and for each open neighbourhood W of p. Suppose not.
Then there sre € > O and an open neighbourhood W; of p such
that Wyn (q - € ,q) = @. From the definition of point q there
is an open neighbourhood Wz of p such that W,n[ x,q = % ) =@,
Since Y is Hausdorff, there is an open neighbourhood w3 of p
such that W3n[ q,q9 + 81) =@ for any <> 0. Hence WnI x,
q + €)) =0 where W = W)n W,nW;. This contradicts the defi-
nition of point q.

Proof of the Theoreme Suppose that there is a regular
Hausdorff space Y containing S as a dense subset and the con-
dition (% ) holds. We first show that
(k%) for each x, y in S there exist p in Y - S and p;, P,
in (x,y] such that py# p, and Wnlp -¢ P )+ @ and
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Wn(py, = € ,P))% P for each € > O and open neighbourhood W
of p.

Since Y is regular, there is a point z in (x,y) such that
fx,2)cULx,y). Ffrom the condition (%) there is a point p in

[x,2)" S = [x,2). Then p € [x,z2)cULx,y) and pe S—:[——x,z),
and therefore for each open neighbourhood W of p we have
BENAULx,y)N(S = [x,2)) =WAlx,y)n(S -[x,2)) =W N
nlz,y). This implies that pe [_;;7). Hence there exists a

point p in Y - S belonging to [x,2z) and [z,y). By the Lem
ma, there exist p; and p, in § such that (%) holds for the
point p.

From the condition (% x ) it follows that a family &
consisting of open intervals (pl,pz), where p; and p, are
points defined as in (k% ), is a or -base on R. Since R is

complete, there is a point x, on R such that the family P is

o

the base st Xqe Now let y> X, be given. Since Y is regular,

there is a point z such that [x,z) = U[xo,z}cU[xo,y). From

the fact that & is a base of R at the point x, it follows
that there are p in Y - S ad py,P, in S such that (pl,pz) c
c (xo - 1,2z) and X, € (pl’p2) end the condition (% %) holds.
From the condition (% % ) we infer that pel xo,z) and p €
elx, - 1,x,) (because Wnlx, - 1,x°): Wnalp - € yP )+ 0
and Wn Exo,z): Wn(p? -€ ,pz)# @ for each open neighbourhood
W of p and for any € > O). But peULx,,y) and ULx,,y) is
the open neighbourhood of point p such that UL xo,y} nl X, =
= 1,x,) =[x,,¥ydnlx, = 1,x )= 6. Hence p & [xy = 1,x); a

contradiction.
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3. Example. There exists a connected Hausdorff space Y
containing S as a dense subset.

For each xeR, let D =4d,,d;,...% be an arbitrary se-
quence such that d;e R, dy< di+l< x and x =:’l‘§’mm 4y for i =
= 1,2,..s « By the Sierpinski’s Theorem there exists a family
Qx of the cardinality of continuum consisting of infinite
subsets of Dx the union which is D, and each two members of
*@.x have only finitely many points in common. Observe that
each member of &), 1is discrete and closed in S. Let Z = Ax A,
where A is an arbitrary subset of S which is dense in S. By a
transfinite induction we can define sets D(x,y) of the form
KuL, where K€ D, and L € D, , such that D(x,y)n D(t,s) are
finite or empty for (x,y)# (t,s). Let Y = SUZ. Now we define
the topology in Y. If peS, then let the collection of all sub-
sets of S of the form [p,x) be a base in Y at the point p. If
p = (x,y)e Z, then let the collection of all subsets W of ¥ of
the form W =4{ptuG EDp -~ F) be a base in Y at the point p,
where F is a finite subset of S and for each subset B of S
GL[ B1 denotes an arbitrary open neighbourhood of the subset B
in S ard DP = D(x,y). Clearly, S is a dense and open subspace
of Y.

Now we prove that Y is Hausdorff. If p,qe S and p#$q, say
p<gq, then [p,q) and [q,q + 1) are two mutually disjoint
open subsets in Y containing p and q. If p,qe Z and p#+q, then
Dpn Dq = F 1s a finite subset of S. Hence Dp - F and Dq - F
are closed and mutually disjoint subsets of S. Since S is a
normal space, there are mutually disjoint open subsets

G[Dp-FJ and G[Dq-FJ in S. Hence Wp= {ptv G[Dp-F]
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and wé =4qiu G [Dq - FJ] are mutuslly disjoint open subsets
containing p and q. If pe€ Z and ge S, then also there are mu~

tually disjoint open subsets G [Dp -4q3] and [q,q *+€) con-

taining p and q.

The space Y is connected, because for each two mutually
disjoint open subsets U and V of Y there are points x, y be-
longing to A and e > O such that xe(x - € ,x +€)c UnS and
ye(y - e,y +€)cVAS and therefore there is a point p =

= (x,y) in Y such that pe Un7V,

Remark. If, in addition, the set A defined above is a
countable subspace of S (for example the set Q of rational num=
bers), then the space Y is Lindelof and a subspace Ax AuA of

Y is an example of countable connected space.
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