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COMMENT AT IONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,3 (1977)

ON NATURAL MEROTOPIES

Petr SIMON, Praha

Abstract: A natural merotopy is defined and the condi-
tions under which the merotopy is natural are found and dis-
cussed. An example of a metric space whose natural merotopy
admits the value 2 for the locsal merotopic character is given.

Key words and phrases: Topological space, closure space,
semi-separated space, merotopic space, local merotopic charac-
ter, E-compact space, projective (inductive) generation.

AMS: 54A05, 54EO05 Ref. Z.: 3.961.1

Ve shnll deal with the category of merotopic spaces. This
type of continuity structure has been studied under various
names: quasi-uniform spaces [7), merotopic spaces (8],[9),[10],
[12], quasi-nearness spaces [11,[21,[41,(51,[6]. The present
paper is a free continuation of [12]. In the first part, we
shall briefly summarize the definitions and basic propositions;
for the details, see [9] and [12]. Then the necessary and suf=-
ficient condition for a merotopy to be natural is given. The
third part contains an example to the question posed in [12],
whether there exists a natural merotopy for a metric space
with the value 2 for local merotopic character. finally, the
consequences of the equality Mew(X,Y) = €(X,Y) is brief-
ly discussed in the fourth part. The notation and symbols from
[3)is used.
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1. Let E be a set. If & and B are subsets of exp E,
we shall say that Q corefines B if for every A€ & there
is a Be & with BcA.

A merotopic space is a pair (E, "> , where E is a set
and T c exp exp E satisfies

(i) if for M c exp E there is some 72 € ™ such that
M corefines M ,then M € T ;

(11) if My v M, e T, then either My el or M,eT;

(111) for every xeB, {ix33eT;

(iv) 0&T, 1Dt el .

The system T° is called a merotopy and its members are
called micromeric.

A mapping f: (Ey, ]":l >— < E;y 5> 48 called a meroto-
pic mapping if £ [’mll € 1"‘2 whenever ’”215 T'l. The category
of merotopic spaces with the morphisms just described will be
denoted by Mer , a8 family of all merotopic mappings from
a merotopic space X to Y will be denoted by ’m.va(X,Y).

Let ' be a merotopy on a set E. A system 6,0 c " will
be called fundamental (for I" ) if T c T"; whenever T, is a
merotopy on E containing © .

A merotopic space (E,T" > will be called a filter-me~
rotopic (and T a filter-merotopy) if there exists a fundamen—
tal system for T" consisting of filters on E.

A merotopic cover (equivalently, T -cover) ¥ of a space
{E,T" ) is such a cover of the set E that for each M e T
there exist a Z2e€ % and anMe M with Mc Z.

A merotopic space ( E4 " » will be called semi-separat-
ed if {{x,y}te T 1implies x =y, for each x,y€ E.
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Let {(E, T % be a merotopic space, define a mepping
cl(M): exp E—> exp E by the rule
cl{T)X ={xeE: (IMeT)(VMeM)(xeM& MnX+0)3 .
It is easy to verify that ¢l(T") is a closure operator on E,
but not necessarily topolngy. Call it to be induced by the me-
rotopy T" . Obviously, if ¢ E, "> 1is semi-separated, then
the induced closure is semi-separsated.

Denote by ’]T‘op-,—1 (Cl T, ) the category of semi-sepa-

rated topological (closure) spaces, and let, as usual, <€(X,Y)
be the set of all continuous mappings from X into Y.

Let (E,u) be a topological or closure space. Let meriu)=
= {M c exp E: there is a point x€ E whose neighborhood system
corefines M % . One can check that mer(u) is a merotopy, which
is filter. If u is semi-separated, then cl(mer(u)) = us In all
cases when a topological (closure) space { E,u> will be con-
sidered as a merotopic space and the merotopy will not be ex=
plicitly described, we shall assume it to be mer(u).

The category Mew is isomorphic to the category Q -

- Near of quasi-nearness spaces (see e.g. [5], Theorem 3.7).

2.
2.1. Definition. Let {( E,u) be a semi-separated topolo-

gical space, let " be a merotopy on E. We shall call a mero—
topy T" to be natural, if there exists an embedding
F 3 Topy,—> Mer such that

(1) <ET)> = F<Eju)d;

(ii) for every ( F,v> € Top.r1
then cl(A) = v;

, if <F,a> = F(Fv),
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(i11) for every (i#,v) ,{r,v de Ta:lp1.1 and f: F—> §,
fe<€ (< v, <(r ,v’>) if and only if fe¢ Mere (P p,v),
FP<riyv™)).
In other words, (E, T > 1is an image of { E,u) under

some functor which is a realization of Topy, into Mer .

According to the isomorphism between Mew and Q - Neaw , we
can similarly speak about natural quasi-nearness structures.
It is well-known that topolrgical nearness spaces are natural
(51, 4.5).

Another example of a natural quasi-nearness structure is,
for a given topolngical space ¢ X,u? , the structure f defined
as follows: A e ‘g' iff there are some Ac X and xe€ uA such
that A corefines {4, ix3}3} -

Let <X,u? be a topological space, let T be a merotopy
whose fundamental system consists of all {Fuixt :Fe 3§ with
3 an ultrafilter on X converging to x. T 1is a natural mero-
topye.

Various seemingly "nice" merotopies need not be natural:

On the real line R ,let M e T iff there is some x ¢ R

such that either the family { O x,x +rl: r>03% or the fami-

ly {1 x -r,x23: r>0% corefines M . (The mapping x.sinx
though continuous, is not merotopic.)

Let us notice the following two easy facts:

242. Propogsition. Let (E,T") ©be a semi-gseparated mero-
topic space, ¢ E;u') semi-separated topological space, let 1
be a mapping from E into E’. Then the following are equivalent:
(a) £:(E,ess "> —> < E ,mer(u’) > 4s merotopie,

(b) £:<E,cl(T")>—>< E",u’) 1is continuous.
(ess " is the smallest merotopy containing {MeT : N M+ 23.)
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Proof. Suppose £ to be merotopic. ror Xc E and x ecl(T)X
let M be the T -micromeric collection with x € MM and
MnX+0 for each Me T . Clearly M € ess T , hence £ L Mle
e mer(u’). The collection £ [M1]1 witnesses to £(x)e cl(mer(u’))
£[X] ,thus £ is continuous.

Suppose f to be continuous. Denote by O (x) the neighbor-
hood system of x, U (f(x)) the neighborhood system of f{x).
Let M e esa(T ), Since cl(ess(T)) = ¢1(T ), there existsl so-
me x€ E such that 0 (x) corefines M . Since £ is contimuous,

U(£(x)) corefines £ [0 (x)] . So U(£(x)) corefines £LM]
and FLM] belongs to mer{u’).

2.3. Proposjtion. Let < E,u ) be a semi-separated non-
discrete topological space, x non-isolated point of E and Y ar-
bitrary infinite subset of E. Then there exists a merotopy T
on E satisfying:

(a) cl(T) = u,
(b) if we denote by u* the topology (on E) projectively gene-
rated by the ring of all merotopic functions from <E,T > +to
R, then xeux Y.

Proof. Since x is non-isolated, there exist a directed
set (A, <« > and a net ixa:ae A% converging to x with all
Xg distinct from x. Since Y is infinite, we may order it by so—-
me directed order =2 such that Y has not the greatest element
under =2 .

Define M c exp E as follows:

m = {Ma’y:a €A, yeY%, where
M,y =ixpibeabzaivd yiyev,yeyl.

Let ™ be a merotopy whose fundamental system is mer(u)u{iMmi.
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Since MM =@, cl(T) = u.

Let £ € Mer ({E, ™ % ,R). Then there exists a point z ¢
€ R such that (”(z), its neighborhood system, corefines
£LMI,0bviously ze£L¥] and {f(xa):ae A § converges to z.
But, according to 2.2, f: {E,u > —> R is continuous, which im-
plies that f(x) = z.

We have proved that for every f € Mt (CE,T"),R) is true
that £(x)e £L Y3 y thus (u* 1is projectively generated by this
family) xeu* Y,

2.4. Copvention. Let (E,u? be a semi-separated topolo-
gical space, let " be a merotopy on E. The condition "a map-
ping £: (E,u > —> { E,u ? is continuous if and only if the ma-
pping £: (E, "> —> ( E, " > 1is merotopic” will be sbbrevia-

ted to " ' preserves endomorphisms".

2.5. Theorem, Let (E,u > be a semi-separated topologi~-
cal space. Then the merotopy T c¢ mer(u) which induces u is
natural if and only if " preserves endomorphismse

Proof. The necessity is obvious.

Sufficiency: Let I be an endomorphisms-preserving mero=-
topy, ¢l(T") = u, T c mer(u). Given arbitrary semi-separat-
ed topological space % = P,v> , denote by Agp the finest
merotopy on P such that a mapping £: <E, T ?» —> (P, Ay
is merotopic whenever £: (E,u > —> < P,v > 1is continuous. This
is always possible since the category Mer has inductive
generation ([9]). Let Tp be the finest merotopy on P indu-
cing v (for the description of this merotopy, see [12], p.
252). Let F3 TOPT_'——> Mer be a functor defined by FP =
={P,sup{ A4p, [ )> for objects, F£ = £ for mappings. Then
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F 1is the desired realization.

I. The merotopy sup( Ay, Tp» ) induces v: Tp induces
v, thus cl(sup( Ay, T'p )) is coarser than v. To show the e~
quality, it suffices to prove that c1(Ap ) is finer than v.
Since T" © mer(u), every mapping f£: <E, " > —> { P,mer(v) >
is merotopic whenever f£: (E,u)>—><{ P,v> is continuous as a
consequence of 2.2, Thus Ag,c mer(v), because Ay s in-
ductively generated, but this inclusion implies that cl( A:.,,)
is finer than v.

IT. Let ® =<P,v>, Q,=<Q,w)> be two semi-separated
topological spaces, £ a mapping from the set P into the set
Q. If £: FP —> FQ  1s merotopic, then £: £ —>Q, is con—
tinuous, since by I F 2 (TQ, , resp.) has the merotopy in-
duecing v (w, resp.)e

Next, suppose £: P —>(@ to be continuous. “hen
£: (P, Ty —><Q, T‘Q> is obviously merotopic and if we
prove that £: <P, 85> —><Q, Ag > 1is merotopic, then
£: FP —> FQ  will be merotopic, too.

Let g: <E, "> —>< P, Ap ) be an arbitrary merotopiec
mapping. If no such mapping exists, then Ag. has a fundamen—
tel system {{{x3} :xePtand £: P, Dp> —> <L Q, B> 18
merotopic. If there is at least one such g, then g: (E,u > —
—>{ P,v) is continuous, thus fog: {(E,u)>—>< Quw > is
continuous and it follows from the definition of AQ that
fog:<E, "> —> (Q, Ag > is merotopic. Since this holds
for every merotopic mapping g: <E, 7" > —><{ P, Ap ) and since
a merotopy A, 18 inductively generated by the family of all

those g'e, £ is merotopic.

- 473 -



III. Finally, we must show that FCE,u> = {E T>.
This is the only point where we need the assumption that T
preserves endomorphisms. Denote € = <{E,u). Since T indu-
ces u, T‘E c T" . The merotopy AE is inductively generated
by all continuous mappings f: { E,u >—> < E,u?, thus Aen r
(the identity mapping is continuous), and the system
{glMil:MeT , g:{E,u ?>—><C E,u ) is continuous }
is fundamental for Ae . But T preserves endomorphisms,
thus g LM1 €T whenever g: € —> € 1is continuous and
M € T° , hence by the definition of a fundamental system,
beeT .

We hove obtained T, ¢ T, Ag =T, thus F (Eu)=
= (E,sup( Tg , Ag )?=<E,T">» and the proof is finished.

In Top1-1 , there are two important full subcategories:
The category P of all coarse semi-separated spaces (i.e. the
spaces whose closed subsets are either finite or empty or the
whole space) and the category € of all fine non-discrete
spaces (i.e. the non-discrete subspaces of the tech-Stone com~
pactification of a discrete space, containing preeisely one
ideal point). It is a well-known fact that every topolegical
semi-separated space P is projectively (inductively, resp.)
generated by the family of all continuous mappings from P in-
to coarse semi-separated spaces (from fine non-discrete spaces
into P , resp.). If we realize that the category Mew has
both the inductive and proJjective generation, we obtain the
following result:

2.6. Theorege Let Fs P—> Mer (F: C—Mer, resp.)

be a reslization. Then F can be extended into the realizati-
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on @ ¢ Topy — Mer .
1
The proof may be left to the reader.

2.7. Remark. Notice that throughout this paper we have
no need to use the assumption ¢l ¢l M = ¢l M. Thus all the
results from this chapter will remain vaiid if we rerplace

"tnpological" by "closure" everywhere.

3. In [12], the notion of local merotepic chsracter
was introduced and some properties of this cardinsl invari-
ant were shown. For the sake of completeness we give the de=-
finition.

3.1. befinition. Let (E, T"> be a (semi-separated) me-
rotopic space, let x€ E. Let us define

oox = inf4dcard A : A sgatisfies (0),(1),(ii) below?

() AcT,

(1) if M e A, thenx e MM,

(ii) for every choice My, € M , there exists a neigh-
borhood U of x (in ¢1(T')) such that Uc U{My: Me &3 .

The fcllowing problem was studied in [12]: Given a clo=-
sure space { E,u) , a point xeE and a ecardinal « .Lves
there exist a merotopy " on E indueing u with ox = o ?

As an example, for <E,u? =[0,11 and arbitrary x€&E
the answer is affirmative whenever 1 £ o« £ ¢ .+ But this will
never remain true if we are looking for natural merotopies on—
ly, since the following holds: Let < E,u ) be an uncountable
separable complete metric space without isolated points, let
x€E, let T be a natural merotopy for ¢ E,u). Then, assum-

ing (CH), either oox =1 or ox =¢ ([12], Theorem 3.9).
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~This chapter will be devoted to an example that the as-—
sumption of completeness cannot be omitted in the theorem

above.

3.2. Lemma. Assume (CH). There exist two disjoint sub-
gets P, Qof I (=[0,11) such that the following holds:

(1) PuQ cannot be mapped continuously onto I,

(2) if £ is continuous real-valued function defined on
P and if U is open in I, then UnQ - £[P1+ @,

(2°) if g is continuous real-valued function defined on
Q and if V is open in I, then VA P - gl Q1+ 4,

(3) both P and Q meet each open subset of I in uncount-
ably many points.

Proof. Let & be the set of all continuous real-valued
functions whose domain is some G4 —subset of I and whose ran-
ge is an uncountable subset of I. Then, assuming (CH), we may
write F ={f, : x < cdli and suppose that each f ¢ & is
listed w~-times.

For &« <, , the set £, [ dom(£, )] is uncountable, thus,
using (CH) once more, we may write £, [dom(f )] =d{y,: 8 <
< @y % . Let Exp =f;1(yﬁ ). For o< < cy , the system §E 4 ¢
PR @3 is a pairwise disjoint eollection of non-void
subsets of I, thus for at most countably many 3 ‘s the sets
E“P are non-meager. Deénote by S, the set of all Jp € £
[dom(£f, )] such that E,p is non-meager; having done this, de-
fine T, = {S_ : L &}, Finally, let U in< w3} be an
open basis for I and suppose that U0 = I.

The sets P and Q@ will be defined by a transfinite induec-
tion:
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o = O: Pick some an‘, meager and choose two points p,,
°
Qe I - (Tyv EOTO) such that p,# q, and, if fO(Po) of fo(qo)

is defined, then fo(po)* q, and fo(qo)* Poe

Let e <@, and suppose that p. ,q, 'E"?'c. have been

defined for all L <e . Since {p_ : L < < }u {q ==}

is countable, there is some 7 < <, such that E,, 18
meager md disjoint with {p_:tL<«x3udq :tL< 3.
The following sets

M:‘: U{f:l[p“_]:ueae, ®,L <o}

Ugelrg,l: v e o, %, <}

"

Me(.
2
M;‘=-ifu (Pl L « <, % < 3§
ME =g, (g ): L & e, % <
M =4{p L < o 3
M:={qbzu<oc§

My = U{EL% 1L = 3
are meager: MY’ M, MJ M are countable and MM MY
are countable unions of meager sets since p_ ,q_ Wwere never
contained in T_ . Let My = U{M: i =1,2,...,7%-

Suppose that £, = £ and that it is exactly the n-th ap-
pearance of £ in the ordering of 3'. Then Uy, = (T, v M )+ ¢
and it follows that we can choose Py 3Qq € Up = (T v M)
such that p  + q. and, if £, (p.) or fo (qec) 18 defined,
then £ (P )+ Qo and £ (qoc )+ Poc « Since P ydec do not
belong to T, , it is again true thet f:]' Cp,1 and f:l Lq.]
are meager for each L € oc .

It remains to show that P ={p_ :e < o, % end Q =

={q 3 % < @} are the desired sets.
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Suppose f£f: PuQ —> I to be continuous. If the range of
f is countable, it cannot be the whole I. If the range of f
is uncountable, extend f continuously to some G -subset of
I; this extension can be found in ¥ , say, on o~th place.
From the definition of P and Q we know that PuQ is disjoint
with Eoca',, hence y7¢¢ £ CPuQ1l and £ ,LPUQIo £IPUR].

Thus (1) is verified.

The validity of (3) is obvious: If G is an open subset
of I, then it contains some base-element U, and from the con-
struction of P and Q follows that card(UnP) = w; =
= card(U,n Q).

It remains to verify (2), simce (2°) is simply the sym-
metric case. Let f be a continuous function defined on P, let
U be an open subset of I. If the range of £ is countable, then
UnQ=-f£[(P1l% B by (3). If the range of £ is uncountable, de-
note by g the continuous extension of £ to some suitable Gg -
subset of I. The family {U,: n< w3} is a base for I, so we
can find some natural k such that Uk U.

Since g belongs to 3 and since each member of ¥ was lis-
ted @ -times in the ordering {f, : < < <, , there is some
A < cw,; such that £, = g and such that this is just the
k~th occasion when g appears in {fx P < w, 3 . The defini-
tion of Q implies that Q€ QnUk and we are to show that
qatfs fa[PJ: Let p_€ P, then

for L =A, £,(p,)4q, by the definition of Py 1Qa»
for L<A,q,* £, (p_ ), since £, (p, e M;: and

a
qa¢ M, > M* ’
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-1 - L

for L> A, p & fa. [qal,since fal[qa]cmzc M_ and
py* ML *
Thus £(p_)#%q, for all L < @, , equivalently, q, € UnQ -
-f£LPY.

3.3. Theorem. Assume (CH), There exists uncountable se-
parable metric space without isolated points { E,u) and a na-
turel merotopy T" for <{E,u) such that o°x = 2 for esch x € E.

Proof. Let E = PuQ, where P and Q are the sets from the
preceding lemma, with the topology derived from the topology
of reals. The topological properties of E follow immediately
from (3) of Lemma 3.2.

If U(x) is the neighborhood system of x in L 0,11, let
us define

mQ(x) ={UnQuix} :Ue U},

mP(x) ={UnPudx}: Ueulx)y,
and let " be a merotopy on E, whose fundamental system con-
sists of all ’ma(x), M, (x) with x€E and of all their con-
tinuous images under the mappings from {E,u? to < E,u). Sin-
ce T c mer(u) and since T preserves endomorphisms, according
to 2,5 the merotopy ™ is natural. But from Lemma 3.2 it fol-
lows that the neighborhood system of a point x€E belongs to
" for no x€E - see (2),(2°) from the Lemma. Thus Gx+41,
but evidently the system A = &me (x), ma (x)$ is of cardi-
nality 2 and satisfies (0),(i),(ii) from 3.1, Thue &x = 2 for

each xe E,

4. Let us give another look to the propositions 2.2 and

2.3. If we want to study the natural merotopies, it is clear
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that the equality Mer(<E, T > ,<F, A) ) = €({Eu?,
{F,v>) will be of utmost importance. Proposition 2.2 shows,
as a special case, that the implication
Fc mer(u) & cl(T) =u = Mex KE,T") ,<F,A)) =
= €(<E,u>,{(F,cl(A)>)
holds whenever A = mer(cl(A)) and the Proposition 2.3 indi-
cates that 1t would not be wise to omit the assumption T c
c mer(u). What can be said about the reverse implication in
the formula above?
We shall give some observations here; the easy proofs are omit-
ted.

4.1. Definition (see [111). Let P and X be topological
spaces. The space X will be called P-regular (P-compact, resp.)
if X can be embedded (embedded as a closed subspace, resp.)

into some cube P¥,

4.2, Proposition. Let P be a semi-separated topological
space, {E,u? P-regular topological space. If for each mero-
topy " on E is true that T c mer(u) provided that T" sa-
tisfies ¢l(T) = u and Men(<E, ) ,P) = €(<E,u),P), then
{ E,u) is P-compact.

4.3. Corollary. Let {E,u) be completely regular Haus~-
dorff and let for every merotopy T on E with ¢l(T) = u and
Mer (CE,T>,R) = €(E) is true that T c mer(u). Then

{E,u 1is realcompact.

4.4, Proposjtiogs Let < E,u) be a completely regular
Hausdorff topological space. Then < E,u > is compact if and
only if for every merotopy T on E such that ¢l(T") = u and
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Mer (LE,T>, C0,11) = €({Eud>, £0,11) is true that

T ¢ mer(u).

4.5. Corollary. Let (E,u> be a completely regular
Hausdorff space, T" merotopy on E, cl(T) = u, Denote the
tech-Stone compactification (< E,ud as <(E,d ? . Then the
following are equivalent:

(a) Mer (<E,T>,0L0,11) = €({E,u>,00,1])

(b) T c mer(Wn exp exp E.

4.6, Remork. Compare 4.4 and 4,2. It may seem that in
4.2 the reverse implication should be valid, too. This is not

true, not even in the case P = R (realccmpact spaces).
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