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AN ABELIAN EHJODIC THEOREM 

fyotaro SATO, Sakado 

Abstract: An individual Abelian ergodic theorem is pro­
ved for a linear operator T on L^ of a'0-finite measure spa­
ce which satisfies certain boundedness conditions. 
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Secondary 28A65 

Introduction. Derriennic and Lin (t33) showed by an ex­

ample that given an €• > 0 there exist a positive linear 

operator T on L^ of a finite measure space, with Tl = 1 and 

II T n | ., =- 1 + e for all n-t 1, and a function f in L^ such 

that the individual ergodic limit 

«l ttl-4 .: 

lim £ 2 Txf (x) 

does not exist almost everywhere on a certain measurable sub­

set of positive measure. On the other hand, the author ([71) 

has recently proved the following ergodic theorem. 

Theorem A: Let T be a bounded linear operator on L-, of 

a finite measure space and X, its linear modulus in the sense 

of Chacon and Krengel ([21). Assume the conditions: 
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1 "J-** i 1 m,~^ i 
sup fl £ .IS,, K II T < o> and supII ~ 21 "« fl < a? . 

Then, for every f in L^ , the ergodic limit 

-, m,-4 . 
lim ± .S Txf (x) 

exists and is finite almost everywhere. 

In connection with these results, it would be natural 

to ask whether the almost everywhere existence of the limit 

in Theorem A holds for every f in L with 1< p -< oo . Un­

fortunately, we do not know the answer even for T positive 

and power bounded with Tl = 1 (see also C31). And this is 

the starting point for the work in this papsr. 

It will be observed below that if T is a bounded line­

ar operator on L of a C-finite measure space such that 
a 1 12-7̂  i 

supUg JS.0 T li^-c oo and also such that the adjoint of the 

linear modulus t of T has a strictly positive subinvariaoat 

function s in L^ , then for ev«ry 16 p < oo and every f in 

I.. , the Abelian ergodic limit 

lim (1 -a) S A Pi
I¥1f(x) 

exists and is finite almost everywhere. 

Abelian ergodic theorem. Let (Xf<F,(ct) be at & -finite 

measure space and L ((U,) = ^(X, .F, (u.), 1.6 p 6 oo , the usu­

al (complex) Banach spaces. Let T be a bounded linear opera­

tor on L.,(fe>) and t: its linear modulus. T* and is* will 

denote the corresponding adjoint operators on L-,((e*)* = 

* Loe((t6). The following conditions (I) and (II) are assum­

ed! throughout the remainder of the paper: 
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(I ) For some constant K £ l , 
•» fflr-4 • 

supll^ . 2 Tx.f II £ KOf! for a l l f e L1( <*) n L<30( ^ ) . 

(II ) There e x i s t s a function s in L^ifju) s a t i s f y i n g 

X = - (x : s (x )> 0 \ and t * s = : s . 

(We r e c a l l that T i s a contract ion, i . e . , II T II ̂ .4 1 i f and 

only i f t;* 1.4,1., and that i f tr s a t i s f i e s 

sup II i 21 nz x II T -* co and lim sup II £ . 2 n tJ x f B - > 0 

for every nonnegative f in L-,((U/) with II f II ̂ 0 , then t h e ­

re e x i s t s a function s in L^ with s > 0 almost everywhere 

on X and tf* s = s (cf. Corollary 2 of 161) . 

Since / I Tf I s a p, * f { x \ f\)s d<a * / I f |<**s d(t«,=. 

/ I f I s d(U/ for a l l f e ^ ( ( c c ) , and s ince L^((0,) i s a dense 

subspace of L-^s d<u.) = L 1 (X f £' f s d ^ ) , T may be regarded as 

a l inear contraction operator on L1(s d(U,). Clearly, T on 

L,(s d(tc) s a t i s f i e s 

s u p l l | . 2 ^£11^6 K Rf It^ for a l l te l^ie d<a)r. 1.^(8 d(tt). 

Therefore, by the Riesz convexity theorem, T a lso may be r e ­

garded as a l inear operator on each 1^(3 d<<ju), with 16-p < 

< oo , such that 

It then fol lows that sup It (l/njT11 |l ^-£ oo , and hence m, p 
1/n eo n ^ 

lim II Or IV 6 1 . Thus , for every Q< A < 1 , S n A ^ T i s 

a bounded l inear operator on I^Cs d(U,), and i t a l so fo l lows 

that , for every f e l^(s d<a), S, A I 1 | T I l f ( x ) l < co for s i -

most a l l x € X. 
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Under these circumstances, we shall prove the following 

theorem. 

l:heorem: Por every 1* p < co and every fe I., (s dftc-), 

the limit 

lim (1 -A,)JL aI¥1f(x) 

exists and is finite for almost all x 6 X. 

Por the proof of this theorem, we need two lemmas. The 

first one is a slight generalization of Chacon's maximal er-

godic lemma (111). 

Lemma 1; Por every l£ p < oo , every fc I.. (s djo,) and 

every constant a>-0, we have 

f (a - min«tlf(x)l,aj) a<tc * £ (lf(x)l - a) dja, 
•lf*>KV* ^ 4lf.>a,* ^' 

where f* is defined by 

f *(x) » sup | ì З î
л
 T^f (x) 1 (x є X). 

Proof: Since Chacon's argument (£13) can be easily mo­

dified to yield a proof of this lemma, we omit the details. 

Lemma 2: Por every 14 p < oo and every f« IV (s d<t->), 

let 

?(x) « sup lu -a) J L a ^ f U ) ! (xcx). 

Then f(x)-c oo for almost all xcX. 

Proof: Since there exists a (tt-null set N such that if 

x 4 N then 

2A5p'lT
nf(x) l^ oo for all 0-* A. < 1, 
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we get, for all x $ N, 

(1 -*>»§- 3t"lS-'(x) = (1 - - . ^ f o - * " * ? * -*«*>--

" (1 " ^ J l o K» +l) An(--5i--iif0T
if(x))3 . 

Since (1 - A ) 2 .£.„ (n+1) .\n = 1, it follows that f(x)&f * (x) 

for all x + N# Therefore it suffices to show that f * (x)«: 00 

for almost all x e X. 

To do this, we apply Lemma 1 and obtain, for every a:>0, 

| (a«f*>K
2a?--Uf |> £*)-* / . (a - min-{|f(x)l,aj )d,u. 

6 / (If(x)l - a) d<u, • 

Thus, for every &>0, we have 

ft < a « f * > K^aD^S / * « l f l> *}) + f ( l f (x)l - a)d<u, 
* * * -Uff>a4 

4 чwt*i l f Ы , đ < * ' I 

and so, lett ing a—• <x> , the desired conclusion follows. 

Proof of the Oneore.*; For 1-c p •< oo , Iu(s d(cc) i s a 
1 " ^ i 

reflexive Banach space. Then, since aupfljj ^ » 0
 T S p ~ K •*-£ 

l i » Btl/iOT^f IS £(sup K l / n i A I L ^ * 1 lim Kl/iDx^f » , = 0 

for a l l f€ 1^(8 d(o,)ALO0(s d(U.), i t follows (cf. Corollari­

es 5.2 and 5.4 in Chapter VIII of £41) that the set 

L * < g - T g + h:g, h e L ( s &(*>) and Th = h i 

i s dense in Lp(s dfc)» 

We notice that i f f t L, then the ergodic limit in the 
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Theorem exists and is finite for almost all xe X. In fact, 

this follows from considering the case f = g - Tg, with g e 

1.^(8 d(U,)« If this is the case, then we have for almost all 

xe X, 

I (1 -.A) SL a1¥af(x)| * (1 -a)(|g(x)l + T£(x)). 
• (ft, sa U 

eO 

Hence, by Lemma 2t lim (1 - a ) S,, a V 1 f ( x ) = Q for al-

most all xe X. 

By this and Lemma 2, we can apply Banach's convergence 

theorem (C4J, p. 332) to infer that, for every fe L-jCs d^c) 

with 1< p -c oo , the ergodic limit in the Theorem exists and 

is finite for almost all xe X. Since L^(s d ^ ) n L ( 8 d (u, ) is 

dense in L-,(s d,<c), we can apply Lemma 2 and Banach's conver­

gence theorem again to infer that, for every f e L-^s d(ti<), 

the ergodic limit in the Theorem exists and is finite for al­

most all xeX. 

The proof is complete. 

If we assume, in addition, that T is positive, then we 

can apply the Chacon-Ornstein lemma (£51, p. 22) and obtaia 

that, for every fe L-(s d<«,), lim (l/n^fCx) = 0 for almost 

all xe X. Therefore the above argument shows that, for every 

l£p-< co and every f 6 L ( s d«a,>, the limit 

limf .aSftl̂ fUl' 

exists and is finite for almost all xe X. 

Although we do not know whether this result holds with­

out assuming that T is positive, the next proposition gives 

a partial answer* 
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Proposition: If X is countable, then for every U p < 

< oo and every f 6 L (s d $x, ), the limit 

-, m,-A \ 
lim ± .SL Txf (x) 
01, n «,» o 

exists and is finite for almost all xeX. 

Proof: Without loss of generality we may assume that 

0 < {o(ixlt) < oo for each x e X. Let Cl-̂ ) be any strictly in­

creasing sequence of positive integers, and take a subsequen­

ce (jn) of (k^) so that 

J l ^ l / j ^ oo . 

Then, for all f e Î Cs d<u,), we have 

fc-!4(-A.>l-,0Brli'e °° * m, 

and hence 

lim (l/XJT nr(x) = 0 
nv n 

for all xcX. This and the argument used in the proof of the 

Theorem imply that, for every 1£ p < oo and every fe L(s d(tc)f 

the limit 

lim i- .S n T
1^(x) 

exists and is finite for all x€ X. We have now proved that 

every strictly increasing sequence Clt̂ } of positive integers 

has a subsequence (:jn) such that, for every 1-Srp<. oo and e-

very f e 1^(8 d("<), the limit 

1 **"1 i lim 4- 9X Txf Cx) 
,iv J n -t> -» 0 

exists and is finite for all xeX. 
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Hence the Proposition follows from the mean ergodic theo­

rem for 1 <p < co • 
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