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COMPLETION OF SEQUENTIAL CAUCHY SPACES

R. FRIE, %ilina and D.C. KENT, Pullman

Abstrgct: We study two types of sequential Cauchy spa-
ces projectively generated b{ clagses of functions, their
completions, and their mutual relations.

Key wordg: Sequential Cauchy space, completion, conver-
gence space, sequentisl envelope.

AMS: 54D55 Ref. 2.: 3.961.1
1. Introduction, For the reader’s convenience we recall

in this section some basics about (sequential) Cauchy spaces.

Notation 1,1. If < x,>,<{y,> are two sequences, then
{x>A{y,> denotes a sequence <z,> defined as follows:
2y T X1y Zp =¥ z3 = Xp 24 = Vogyreees i.e. Xp = Zypyr ¥ =
= Zz‘n’

Definition 1,2. A Cauchy space is a pair (X,L), where
X is a set and L a collection of sequences ranging in X such
that

(1) {xYe L for each x€L;

(2) < x,7€ L implies < x;l) € L for each subsequence
{xp? of {xp? ;3

(3) #f <x,>,{y,? €L and there are subsequences
{xg> of < x, ? end (y;l) of { y,> such that x; = y;, neN,

then {x, >A< y > €L; and
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(4] 1f {xpP>A<{xd>el and {(x,> A{y>€L, then
x =y,

If (X,L) is a Cauchy space, then L is called a Cauchy struc-
ture for X. If L satisfies the additional condition

(5) < x,? € L whenever

(a) each subsequence (xr;) of ¢ xn) contains a sub-
sequence { x_ > of (x_? such that {x;"> €L; and

(v) 1ir (x;l> and <x1;'> are subsequences of { x,?
such that <{x >, <x;"> € L; then {x, DAL x!;') € L;
then (X,L) is said to be a % Cauchy space.

The effect of condition (5) can be brought out by con-
sidering the real line with its usual metric. Every bounded
sequencé of real numbers has a Cauchy subsequence. Hence,
every bounded sequence of real numbers satisfles condition
(a). Yet every bounded sequence of real numbers is not Cgu~
chy in the usual sense because (b) is lacking; e.g. consider
the sequence O, 1, 0, 1, O, 1, «c0o &

A Cauchy space (X,L) induces a convergence space
(X,&£,A) in the following natural way: x = £-1im x iff
{xy> A< x) € L. Moreover, 1f (X,L) is a X Cauchy space,
then o£ = L£* . The topological modification ?Lw" of A
will be called a topological closure for X. A subspace Y of
X 1s topologically.dense in X if ?\.01 ¥ = X. A Cauchy space
is said to be complete if each Cauchy sequence converges
in the induced convergence space. A mapping f: (Xl,Ll) —>
—> (X,,L;) 1is said to be Cauchy-continuous if (x> €I,
implies < £(x,) > € Ly. The set of all Cauchy-continuous func-
tions on (X,L) is denoted by G(X,L). The set
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X={{f; )€ (a(X,L))N; oy nye £a(x,) exists for each
{xp>eL} 1s a Ciuchy structure for 8(X,L) and is said to
be the continuous Cauchy structure. The space (8(&(X,L),m),M)
is denoted by (ﬁz(X,L) ,Mz). The evaluastion mapping
evg: (X,L})—> (/é@(\x,L),uz) is defined by evy(x) = $
for £e8(X,L) we define P, (f) = £(x); it is always Cauchy-

, where

contimous. If 1t is a Cauchy-embedding (i.e. a Cauchy-ho—
meomorphism into), then (X,L) is said to be C-embedded.

2. Projective generations of Cauchy structureg.
o8i definiti « Let (X,L) be a Cauchy

space and Dc 6(X,L), D separates points of X. Let

Ly={{x > € & i £(x,) exists whenever fe D} and

Ly =44 x;) € 2’; S L £,.(x,) exists whenever (£}, £ €
€D is & Cauchy sequence in (&(X,L),M}} . Then L and L, are
* Cat_lehy structures for X and Lc de I‘D’ If L= LD, then L,
resp. (X,L), is said to be ppojectively generated by Da If

L = Ly, then L, resp. (X,L), is said to be c-projectively
generated by D.

It follows immediately that if a space is projectively
generated by D, then it is aglso c-projectively generated by
D. The converse statement is not true in genersl as it will
be shown by a counterexample (see Proposition 4.7)s In
[I - X]1it was proved that for D = C(X,L) the following are
equivalent:

(a) (X,L) is G-embedded; (b) L =1Lp; (c) L = Ly (the ori-
ginal notation is Lp = La, Ly = Ly
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3. d-completion.
Definition 3.1. Let (X,L) be a Cauchy space c-projecti-
vely generated by Dc a(X,L). A complete Cauchy space (Xl,Ll)
is said to be a d-completion of (X,L) if
(a) (X,L) is a topologically dense subspace of (xl,Ll)}
(b) for each fe D there is fe e(XI,Ll) such that
£=7F|X, t.e. Dc(X;,L) ] X;

(e) (¥,1,) is c-projectively generated by
D ={fe e(xl,Ll); P|XeD}; and

(@) D and D endowed with the corresponding continuous
Cauchy structures are Cauchy-homeomorphic under the
natural correspondence, i.e. the correspondence
f—F|X=£1s one-to-one and (f,>, £ €D, 18 a
Cauchy sequence in (6(1?1,L1),M) iff (£, >, £, =
= -fnl X, is a Cauchy sequence in (G(X,L),M).

Lemms 3.2. Let (X,L) be a Cauchy space c-projectively
generated by Dc 6(X,L), (D,M| D) the subspace of (&(X,L),M),
and e a mapping of (X,L) into (G(D,M | D),M) defined as fol-
where for feD we define & (f£) = £(x).

lows: e(x) = Qx,

Then e is a Cauchy embedding.
Lemma 3.2 was proved in [I - K1 in the special case of

D= 6(X,L). The proof of the general case is similar,

Theorem 3.3. Let (X,L) be a Cauchy space c-projective-
ly generated by Dce(X,L). Then there exists a d-completiom
of (X,L).

Proof. It follows from Lemma 3.2 that identifying x with
e(x) we can consider (X,L) as a subspace of (C(D,M|D),M). We
shall prove that the subspace (X;,L;) of (6(D,M| D),M), where
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¥, is the topological closure of X in (&(D,M | D),M) and L, =
= M| X;, 18 a d-completion of (X,L). It was proved in [I - K)
that (G(D,M | D),M) 1s a complete space. Thus the closed sub—
space (X;,L;) of (8(D,M| D),M) is complete. We are to prove
that (xl'I‘l) satisfies conditions (a) - (d) of Definition 3.1l.
Condition (a) follows from the construction of (X;,L;). It
was proved in [F) that the space (&(X,L),M) is C-embedded.
Thus the subspace (D,M| D) is also a-embedded, and hence the
evaluation mapping evy: (D,M|D)—> (&Zp,u| D),¥) 1s & Cau-
chy embedding. Consequently, for each fe D the image evD(f) =
=f1s a Cauchy-continuous function on (G(D,M | D),M). Since
£() = §(£) for each § e G(D,M|D), we have £(x) = £(x) for
each ¢ x = xeX. Hence f= f! X, is a Cauchy-continuous ex-
tension of £ onto (xl’Ll) and condition (b) is satisfied. The
construction of f is shown on the following diagram:

9 id
e(X) d - X, —> G(D,M | D)
A
id=e f’e(.X) ?=r£\'x4 p
£
x R
£

Now, we shall prove condition (d). It follows by & standard
topological argument that the extension fof £ is uniquely
determined. Hence the natural correspondence £ —» T } X==z

is one-to-one. Clearly, if ( £,>, £,]| XeD, is a Cauchy se-
quence in (a(xl,Ll),ll), then <£,>, £, =E,| X, is a Cauchy
sequence in (e'CX,L),M). Conversely, let {f,> be a Cauchy se-
quence in (D,M | D). Since evy is a Cauchy embedding, the se-
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A A

quence <£,>, fy = evp(f ), 15 a Cauchy sequence in
A . — —
(% (o,u | D),MZ)- Hence (% 5, £,| X = £, 1s & Cauchy se-
quence in (é(xl,Ll),u).

It remains to prove condition (c). Let {7 be ase-
quence in X; c ¢(o,M | D) such that

(1) Uy e fm(én) exists whenever < £ 7 ,fme D,is
a Cauchy sequence in (e(xl,Ll),M).
Since Em(én) = Qn(fm), £, =E, ] X, it follows from (d) that
(1) is equivalent to

(2) Uy naew ® (£,) exists whenever < £ ) is a Cau~
chy sequence in (D,M| D),
Thus <@ > € L; and the proof is complete.

Theorem 3.4. Let (X,L) be a Cauchy space c-projectively
generated by Dc G(x,L). If (X),1y) and (X,,L;) sre two d-com-
pletions of (X,L), then there is a Cauchy homeomorphism
h: (X),L))— (xz,Lz) such that h(x) = x for each xe X.

Broof. For i =1,2, denote by D; ={fe e(xi,Li);
£|xeD}, by (Dy,M| D;) the subspace of (a(xi,Li),M), and
by (D,M| D) the subspace of (6(X,L),M). It follows from (d)
in Definition 3.2 that (Dy,M|D;) and (D,M| D) ere Cauchy-
homeomorphic under the natural correspondence. Consequently,
@ : (Dy,M|Dy)—> (D,,M|Dy), where for £&D, its image
@(f£) 1s determined by (£)| X = £| X, and hence also its
first co'n:)ugate @* : (ecnl,u\nl),u)—-r (é‘(Dz,mlnz),m),
©* (§) = 9o § , are Cauchy homeomorphisms. It follows
from Lemma 3.2 thet identifying x with ey(x), where for
fe Dy we define (eiqx))(f) = £(x), we can consider the comp~
lete space (X;,L;) as a closed subspace of (6(D1,M | Dy),M).
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Now, an easy computation shows that for each xe& X we have

@*(x) = x.
ya id’ .
id=e L = 0-2
c(p; ,M|D;) > ¢(D,,M[D,)

?l‘
Since X is topologically dense in (Xi,Li), it follows by a

standard topological argumert that h = @&*|X; is the desi-
red Csuchy homeomorphisme.

4. D-coppletion.

Definition 4,1. Let (X,L) be a Cauchy space projective~
ly generated by Dc 6(X,L). A complete Cauchy space (X;,I,)is
said to be a D-completion of (X,L) if

(a) (X,L) is a topologically dense subspace of (Xl,Ll);

(b) for each fe D there is fe 6(x1,L1) such that £ =
= F| X, 1.e. Dc C(X),L) | X; amd

(e) (xl’Ll) is projectively generated by
D ={Ffex;,L)); E|XeD}.

Proposition 4.2. Let (X,L) be a Cauchy space projecti-
vely generated by Dc 'é(x,L) and (X, 0% A) the associated
convergence space. Then:

(a) Dc ¢{X) and (X,L*,A) is D-sequentially regular.

(b) L is the set of all D-fundamental sequences in
x,L*,A).

(¢) (X,&8*,A) 1s D-sequentially complete iff (X,L)
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is complete.

The straightforward proof is omitted.

Ppoposition 4.3. Let (X,£*,A ) be a D-sequentially
regular convergence space and L the set of all D-fundamental
sequences. Then:

(a) L is & * Cauchy structure for X.

(b) Dc?:(X,L) and (X,L) is projectively generated by De

(¢) (X,L£L*,A) is associated with (X,L),

(d) (X,L) 1s complete iff (X,.£*,A) is D-sequentially
complete.

The straightforward moof is omitted.

Theorem 4,4. Let (X,L) be a Cauchy space projectively
generated by Dc a(x,L). Then there exists a D-completion of
(x,L).

Proof. Let (X,ep,.?t) be the convergence space associa—
ted with (X,L). It follows from (a) in Proposition 4.2 that
(X,£,A) is D-sequentially regular. Let (xl,£1, 3-1) be a
B-sequential envelope of (X,&£,A), D= {feC(X,); F|XeD3,
and Iy the set of all D-fundamental sequences in X;., It fol=
lows from Proposition 4.2 and Proposition 4.3 that “‘1'1‘1)
is a D-completion of (X,L).

Note 4.5. Let (X,£*,A) be a D-sequentially regular
convergence space. Let L be the set of all D-fundamental se—
quences in X. It follows from Proposition 4.3 that (X,L) is
a X Cauchy space projectively generated by DcC a(X,L). Let
(X;,L,) be a D-completion of (X,L). Using Proposition 4.2 and
Proposition 4.3 it i1s easy to see that the convergenee space
(X3,£5,Ay) associated with (X;,L;) is a D-sequential enve-
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lope of (X,a8*, Q).

Theorem 4.6. Let (X,L) be a Cauchy space projectively
generated by Dc GGX,L). If (Xl,Ll) and (Xz,laz.l are two D-com=
pletions of (X,L), then there is a Cauchy homeomorphism
h: (Xy,L,) —> (X‘Z’Lz) such that for each x« X we have h(x) =
= Xo

Proof. Let (X,s8,A) be the convergence space associ-:
ated with (X,L) and (xi"’ei" 9\.1) the convergence space asso-
ciated with (xi,Li), 1 =1,2. It follews from Note 4.5 that
(Xg,of5, Ay) 18 a D-sequential envelope of (X,of A ). Hence
there is a homeomorphism h: "‘v"tv al)—? (%, eez,az) such
that for each x6X we have h(x) = x (ef. Theorem 5 in[N1).
Since (xi,Li) are complete space, h: (Xl,Ll)-——> 6!2,12) is a
Cauchy homeomorphism.

5. Example.
Definition 5.1. Let X @ and <x,>,<y,>€ T W say

that < y,> 1s derived from <x,?, in symbols < ¥y << x2,
12 My >)oF(<x,>), where F(< 2,7 ) denotes the filter

generated by sections of a sequence <z,2,

Example 5.2. Let X, = ( U1\ Ul lx D)ol Oy (x))u
ulx,). Let o« e N', mye N, Ac‘m\#N (xm“m))), and
£ e40,13 2 g function on X, defined as follows:

£f(x) =1 for xe (& U («n.\EJN (xmon)) U (xmo)),

£(x) = 0 otherwise.

Let D be the set of all such functions and (X,,L,) the Cauchy

space projectively generated by D. Let X% sm,LeJN k{“(xmn),
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4 = XU (), D=L, X, I =420 B <20 3< x>,

xeXy, or <z >3 (<x YA<x;>), meN§, and D2 D| X,
Since (X,L) is clearly projectively generated by D it is

also c-projectively generated by D and hence (X,L) possesses

both a D-completion and a d-completion.

Proposition 5.3. For D =D | X, the space (X;,L)) is o=
projectively generated by 3, but not projectively generated
by D.

Hint. L, =4<z,2e Xg; (zp?3< =), xe X, or
Czp ¥R (K2 YA 2 ¥), or (2> 3(Cx DA< x,2)F and
(xpde (L, |ny -1).

Proposition 5.4. (X;,L;) is a d-completion of (X,L).

Hint. L =4<z e ¥ {2, 73<x>, xeX, or
(zn>-§<xm>, méN;o

Proposition 5.5. (xz,Lz) is a D-completion of (X,L).

Proposition 5.6. D and D endowed with the corresponding
continuous Cauchy structures are not Cauchy-homeomorphic un-
der the natural correspondences

Proof. For otherwise (!2,1.2) would be also a d-comple-
tion of (X,L), which would imply the existence of a Cauchy '

homeomorphism h: (X;,I,) —> (X,,L,) such that for each xeX
we have h(x) = x..

Note 5.,7. This shows that the condition (d) in Defini-
tion 3.1 is necessary and sufficient for the uniqueness of
the d-completiom up to a commuting Cauchy homeomorphism (cf.
Theorem 3.4},
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Note 5.8. Let (X,L) be a G-embedded Cauchy space. Since
for D = &(X,L) we have L = L, = Ly, it follows immediately
that a d-completion of (X,L) is also a D-completion of (X,L).
Consequently, the two completions are equivalent. It might be
of some interest to characterize classes Dc € for which the

two completions are equivalent.
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