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EPIMORPHISMS IN SOME GROUPOID VARIETIES
ToméS KEPKA, Praha

Am%g_ﬁ: Two classes of groupoid identities generat-
1n€‘;arie ies with non-surjective epimorphiams’ are investi-
ga .
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AMS: O8M5 Ref. Z.: 2.725.2

Every variety of universal algebras can be viewed as &
category of structures. In this case, a morphism is a monomor-
phism iff it is an injective homomorphism. The corresponding
assertion for epimorphisms is not true. The first known exam-
ples of varieties with non-surjective epimorphisms seem to be
the varieties of semigroups and rings. The reader is referred
to'[1] for original proofs of these facts. The situation in
semigroups wes investigated in detail in [ 2] and [3]. Some ge~
neralizations for algebras and categories were proved in (4]
and { 5]. In this paper we deal with two methods which enable
us to find o larée number of groupoid identities generating
varieties with non-surjective epimorphisms. The first one is
in some sense a generalization of the classical method used
for commutative semigroups. The corresponding identities are
similar to the medial law xy.uv = xu.yv. The second method

can be used for certain varieties of commutative groupoids,
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namely for those varieties, every groupoid of which has at

most one idempotent.

1. Introduction, Let F be an absolutely free groupoid
generated by a set X of variables. Elements from F are called
(groupoid) terms. We define the length 1(t) of a term t by
1(u) =1 for every ueX and 1(rs) = 1(r) + 1(a) for all r,
8 € F. Further we denote by var (t) the set of all variables
occurring in t. The notation t = t(x;,...,x;) means that
var (t) = 4 XgyeeesXp§o If t is @ term and u is a variable
then o(t,u) is the number of occurrences of u in t. If G is
a groupoid then tg 18 the corresponding n-ary operation defi-
ned on G by means of the term t. If t, s are terms then
Mod (t £ s) 1s the variety of groupoids satisfying the iden~
tity t 2 5. We put € = Mod (xy 2 yx), J = Mod (x & xx),

4 = Mod (x.yz 2 xy.z), M = Mod (xy.uv 2 xu.yv), D =
= Mod (x.yz 2 xy.xz, zy.x £ zx.yx). The following lemma is

clear.

141. Lemma. €n ¥ s M and Mn I s D .

& groupoid identity t £ s 18 sald to be quasibalanced
if o{t,u) = o(s,u) for every variable u. A groupoid variety
is called quasibalanced if it can be determined by a set of
quasibalanced identities. The following lemma ia obvious.

1.2. Lemma. The following conditions are equivalent for
a groupoid variety U :

(1) I£ U s Mod (t £ 8) then t = 8 is quasibalanced.

(11) U 1is quasibalanced.

(111) € nSc U .
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2. Closed subgroupoids. Let G be a groupoid and ac G. We
define two mappings Lg,R, of G into G by Lg(b) = ab and R (b)=
= ba for every be G.The groupoid G is called left(right) can-
cellation(division) groupoid if Ly (Ra) is an injective(sur-
Jective)mapping for every ae G. Further, G is called a left

(right) quasigroup if L, (Ba) i3 bijective for every ac G.
Finally, G is a cancellation groupoid if it is both left and
right cancellation groupoid. Similarly we define division
groupoids and quasigroups.

Let H be a subgroupoid of a groupoid G. We say that H
is a left closed subgroupoid of G if be K whenever a, be G
and a, abe H, Similarly we define right closed and closed sub-
groupoids. If MEG is a subset then cl,(M) denotes the left
closed subgroupoid generated by M. Similarly we define crcﬁll)
and cG(M). A subgroupoid K€ G is called left dense if ch(K)=
= G, Similarly we define right dense and dense subgroupoids.

The following two lemmas are easy.

2.1. Lemmg. Let H be a subgroupoid of a groupoid G.
Then H is a left dense (resp. right dense, dense) subgroupoid
of cla(H) (resp. crg(H), cz(H)).

2.2. Lemmg. Let H be a left (right) closed subgroupoid
of a left (right) division groupoid G. Then H is a left (right)
division groupoid.

2.3. Lepma. Let H be a left (right) dense subgroupoid of
a groupoid G and £, g be two homomorphisms of G into a left
(right) cancellation groupoid K such that £| H=g| H . Then
Lt =g,

- 267 -



Proof. Put A = {fae G| £(a) = g(a)}. Then HEC A and A is &
subgroupoid of G. Moreover, A is a left right closed subgrou-
poid, as one may check easily. Hence A = G.

2.4. Lepma. Let H be a dense subgroupoid of s groupoid G
and £, g be two homomorphisms of G into a cancellation groupoid
K such that £| H = g | H. Then £ = g.

Proof. Similar to that of 2.3.

A groupoid G is said to be an LN-groupoid (RN-groupoid) if
every factorgroupoid of the cartesian product Gx G is a left
(right) cancellation groupoid. Further, G is an Nrgroupoid if
it is both an LN snd RN-groupoid. The following result is not
difficult.

2.5. Lemmg. (i) Every group is an N-quasigroup.

(11) Every quasigroup from € A & 1is an N-quasigroup.

The class of quasigroups can be considered as a variety of
algebras with three binary operations. The following lemma is
evident.

2.6. Lemmg. Let G be a’subgroupoid of a quasigroup Q. Then
G is a dense subgroupoid of Q iff Q is generated by G as a qua-
sigroup.

3. Medial groupoids gnd geperalizationg. Let t =
= t(xgy0.0,X;) be a term. We put
'V’(t) = Mod (t(14 y1,...,xnyn) 2 t(x,',...,xn).t(y1,-..,yn))-
For example, if t ='x.yx then
V(t) = Mod (x1y4.(x272.x1y4) é (x4.xﬁ(y,"y234))o
3.4. Lemma. M= U (xy).
Proof. Easy.
3.2, Lemmg. M < vV (t) for every term t.
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Proof. By induction on 1(t).

3.3. Lemma. Let t be a term. Then Mod (x £ t) & % (t).

Proof. Easy.

Let t = t(x,y) be a term and G be a groupoid. We shall say
that G is a t-complete groupoid if for all a, be G there are c,
de€G such that tG(a,c) = b = t,(d,a). The following lemma is clear.

3.4. Lemmg. Let t = xy and G be a groupoid. Then G is t-co-
mplete iff G is a division groupoid.

Let R(+) be the additive group of rational numbers, P be the
set of positive rational numbers and acb =41/2(a + b) for all a,
b€ R. The next lemma is almost obvious.

3.5. Lemma. (i) R(+)e<€n ¥ , R(+) ia an N-quasigroup and
P(+) is a dense subgroupoid of R(+).

(i1) R(c) e M A€ A Y , R(ce) is an N-quasigroup and Ple)
is a dense subgroupoid of R(o).

(111) R(+), R(¢) € V' (%) for every term t.

(iw) R(+), R(o) are t-complete for every term t = t(x,y..

3.6. Legma. Let t = t(x,y) be a term and K, H be two sub-
groupoids of a groupoid G e 7 (t). Suppose that K, H are t-com-
plete, KN H 1s non-empty and G is generated by KuH. Then G is
a homomorphic image of the cartesian product Kx H.

Proof. Define £: Kx N— G by £(a,b) = tg(a,b) for sll aek
and be H. Since G ¢ 7 (t), £ is a homomorphism. Let aec KnH and
be H be arbitrary. There is c €H such that b = tH(a,c). However
tH(a,c) = tg(a,c) = fla,c). Hence HsIm £. Similarly KsIm £ and
Im £ = G.

3.7. Proposition, Let t = j:(x,y) be a term and G e V' (t)
be a t-complete LN-groupoid (RN-groupoid). Let HEG be a left
(right) dense subgroupoid. Then the inclusion HE G is
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an epimorphism in /(t).

Proof. Let £, g: G—»> K be such that K € 77(t) and
£t H =g | H. We can assume that K is generated by Au B, whe-
re A=Imf and B = Im g. The groupoids A, B are homomorphic
images of G, and therefore A, B are t-complete. Further,
£(H) = g(H)s &nB. By 3.6, K 1s a homomorphic image of Ax B,
However AXB 1s a homomorphic image of G< G, and consequent-
ly X 1s a left (right) cancellation groupoid. An applicati-
on of 2.3 finishes the proof.

3.8. Proposition. Let t = t(x,y) be a term and G € 7"(t)
be a t-complete N=-groupoid. Let H& G be a dense subgroupoid.
Then the inclusion HE G is an epimorphism in 77 (t).

Proof. Similar to that of 3.7.

3.9. Corollary. Let Q be a medial N-quasigroup generat-
ed as a quasigroup by a subgroupoid G. Then the inclusion GEQ
is an epimorphism in the variety M .

Proof. Apply 3.8, 3.1, 3.4 and 2.6.

3.40, Theorem. Let t be a groupoid term containing at
least two variables. The following varietlies have non-surjec-
tive epimorphisms:

(1) BEvery variety U such that € n ¥ = U < V (t).

(i1) Every variety % such that M A €n J s U =
eV (t).

(111) Every variety % n 7' (t), where U is a quasi-
balanced variety.

(iv) The variety generated by € A 4 and
Mod (x 2 t).

Proof. (i) It is easy to see that there exists a term
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s = s(x,y) such that '(t) & 9 (a). According to 3.5 and
3.8, the inclusion P(+)E R(+) is an epimorphism in 77 (s),
and hence in U (t).

(11) Similarly as for (i).

(111) and (iv). Clearly, €n ¥ € U NV (t) &€ V' (t) and
Mod (x 2 t) & ¥ (¢t).

Let ‘U be a groupoid variety. We shall say that % sa=-
tisfies the condition (M) if G is a cancellation groupoid,
whenever G € % and G/r is a quasigroup where r is the least

congruence with G/r ¢ M .

3.11. Proposition. The variety ¢ A & satisfies (M),
Proof. See [61, Lemma 8.5.

3.12. Propositiom. Let a groupoid variety 7% satisfy
(M) and Q € 2 be an N-quasigroup. Let GEQ be a dense sub-
groupoid. Then GEQ is an epimorphism in % .

Proof. lLet £, g2 Q— K, Ke U and £|G =g G . We
can assume that K is generated by Im fulm g. Similarly as in
the proof of 3.7, we can show that K/r is a quasigroup where
r is the least congruence with K/r € 7 (use 3.4 and 3.1).

Hence K is a cancellation groupoid and the rest is clear.

3.13. Corollary. The varieties M, M A Y, MA€,Mn Y,
MAD,LAS, DA, MACAT, DACLAT, MALA D

have non-surjective epimorphisms.

4. Several lemmgs. Let F (resp. K) be the absolutely
free (resp. free commutative) groupoid generated by x. Let
@ ¢ F—>K be the canonical homomorphism. The following three

lemmas are easy.
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4.1. Lemma. Let a, b, ¢, deK and ab = cd. Then either
a=¢c, b=xdora=d4, b=c.

4.2. Lepgga. Let a, beF and ¢(a) = ¢(b). Then 1(a) =
= 1({b).

4.3. Lenma. Let a, beF, ¢ (a) = @(b) and G be a com
mutative groupoid. Then aGg = bG’

Let p&K, q€F be such that ¢ (q) = p and @ be a commu~
tative groupoid. We put 1(p) = 1(q) amd pg = q5.

4.4. Lemma. Let p, q, ae¢ K and pK(a) ==,qK(a). Then p =
= q.

Proof. By induction on 1{p) + 1(q).

4.5. Lemma. Let p, q, a, beK. Then pyla) = qK(b) ire
at least one of the following conditions holds:

(1) p ='qx(r) and x-K(a) = Db for some re K.
(11) q = pylr) md rglb) = a for some reK.

Proof. The direct implication can be proved easily by
4.4 and induction on 1(p) + 1{(q), while the converse implica—
tion is trivial.

An element pc K is called reducible if p = gg(r) for so-
me q, r€ K, q¥ x$r, The following lemma is trivial.

4.6. Lagma. Let peX be such that 1(p) is a prime. Then
P is not reducible.

4.7. Llemma. Let p, q& K be not reducible. Suppose that
p*kq and pkxsq. Then px(a)-i- qx(b) for all a, beKk,

Proof. Use 4.5.

Define a relation 7 onK by a7 b iff b = ac for some
ceK. Let @ denote the least reflexive and transitive rela-
tiom containing 9 . If a, beX and a @ b then we shall say
that a is a subterm of b. Finally we shall define symmetriec
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groupoid terms by induction. Every variable is & symmetric

term. If t is a symmetric term then tt is symmetric.

5. Commytative groupoids. Let U be a groupoid variety.
Then T (2 ) denotes the class of all G & % with the follo-

wing property: If e G then there exists a groupoid B e %U
such that H=Gu 4e %, ¢ is an idempotent and G is a subgrou-
poid of H.

5.1. Propositiom. Let % be a groupoid variety such
that svery groupoid from % contains at most ine idempotent.
Let € % and G be a subgroupoid of H such that H =G v{ed
and e is an idempotent. Then the inclusion GE€ H is an epimor-
phism in U .

Proof. Let A € U and f, g be two homomorphisms of H
into & such that £1G = g| G. Since e is idempotent, f(e) and

gle) are so, and consequently f(e) = g(e). Thus £ = g.

5.2. Corollary. Let % be a groupoid variety such that

every groupoid from U contains at moat one idempotent and
3 (U) is non-empty. Then % has non-surjective epimorph-
isms.

Let E (resp. F) be the absolutely free groupoid generat~
ed by x, y (resp. x). We shall assume that F is a subgroupoid
of E. Further, let t, py g€ X be such that t, pe¢ F and
var (q) ={y? . Put @ = Mod (xy 2 yx, t 2 pq).

5.3. Legma. Every groupoid from . contains at most one

idempotent.
Proof. Let G 6 & and a, b& G be idempotents. Then a =

= ta‘a) = pc(a).qc(b) = ab = ba = tc(b) = b,
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5.4, Lemng. Let G €« O and a, b&@ be such that pyla)=
= pg(b). Then tgla) = t4(b).
Proof. Obvious.

5.5. Lemmg. Let Ge€ @ , The following conditions are
equivalent:
(1) ce §°C(Q) .
(11) pglG)n qG(G) is empty.
Proof. (1) implies (i1). Let G, He Q , H=Gu {ed,
ee = @ and pG(a) = qg(b) for some 2, be G. Then tgla) =
= pG(a).e = e.qq(b) = tyle) = e, a contradiction with e&G.
(i1) implies (i), Let e¢G and H=Gu 1ef{. Put aob =
= gb, ece = e, eOpG(a) =tg(a) = pgla)oe, ecc=e =coe
for all a, b, ceG, cépglG). As it is easy to see, G is o
subgroupoid of H(o) and H(e) e Q@ .

5.6. Corollary. Let t, p, q be three groupoid terms such
that var (t) =4xf = var (p) and var (q) =4y?. Let Q=
= Mod (xy 2 yx, t £ pq) and suppose that there exists a grou-
poid G & @ such that pyla)+ qG(b) for all a, be G, Then the

variety A has non-surjective epimorphisms.

5.7. Proposition. The variety O = Mod (x.xx &
£ (x.xx) ((y.yy) (yoy¥)), xy & yx) has non-surjective epimorph-
isms.

Proof. Let G =4£0,2% and 0.0 =41, 1.0 = 0.1 =1.1 = 0.
One may check easil\y that G € @ and a.aa#(b.bb) (b.bb) for

all a, be G. Now we can use 5.6.

5.8. Proposition. The variety @ = Mod (xy 2 yx, x 2
2 (xx)(y.yy)) has non-surjective epimorphisms.
Proof. Let K be the free commutative groupoid generated

- 274 -



by x and M be the set of all pe K such that non (aa)(x.xx)@ p
and non b.bb @ p for all a, beK, btx. If a, be M and abe X
then we put aob = ab. Further we put aaox.xx = a = x.xxo0 aa
and aoga = X.xx = aa o a for every ae€M. We have defined a
groupoid M(c) and M(c) e A , as one may verify easily. Cle-
arly, aoafbo (beb) for all a, beM. Now we can use 5.6.

Let K be the free commutative groupoid generated by x
and t, p, q€ K be three elements satisfying the following con~-
ditions:

(1) p, q are not reducible.

(2} p#q.

(3) non x.qgla)@p for every acKk.

(4) non x.qK(a)g t for every aeKkK.

(5) non x.pK(a)goq for every acK.

(6) non x.pK(a)gvt for every aek.

(7) non ppla).qplb)pt for all a, beK.

5.9. Lempmg. p#x and q# X.

Proof. Let p = x. Since p#q, q#%x and 1(q)= 2. In par-
ticular, xx = xp is a subterm of q, a contradiction. Similar-
ly q#x.

Let M be the set of all re K such that non pgla).qp(bl@r
for all a, b€ K. It is visible that p, q, teM.

5.10. Lemma. tg(a)e€ M for every aeM.

Proof. We shall prove by induction on 1{(k) that kK(a) 6
€ M for every subterm k of t. If k = x then there is nothing
to prove. Let k = bec, bK(a)e M and cx(a)eM. If bK(a).cK(a)s
€ M then kK(a)e M. Suppose that bK(a).cK(a)ﬁm. Then there
are d, e €K such that py(d).qgle)@ bplaley(a). However by(a),
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ex(a)el, and hence pK(d).qK(e) = bx(a).cK(a). We shall assu-
me that py(d) = byla) and qgle) = egla) (the other case is
similar). Taking into account 4.5, we have the following pos-
sibilities:

(1) b = ppe(r) and ¢ = qg(s) for some r, se K. Then pg(r).
..qx(s) is a subterm of t, a contradiction.

(11) b = px(r) and q = eg(s) for some r, se K. If ¢ = x then
be = pk(r) X 18 a subterm of t, a contradiction. Hence c#+x,
and so 8 = x, since q is not reducible. Consequently q = ¢
and be = px(r).qx(x) is a subterm of t, a contradiction.

(112) p = be(r) and ¢ = qgle) for some r, sc K. This case

is similar to the preceding one.

(19} p =bylr), q = eg(8) and rp(d) = a = sy(e) for sore r,
86K, If »r = x =8 then we get a contradiction with te Ms
Hence either ri+x or s+ x. However p, q are not reducible amd
80 either b = x or ¢ = x. Let b = x (the other case i3 simi-
lar). If ¢ = x then p =r, g =5 and pp(d) = a = ggle), &
contradiction with 5.9 and 4.7. Hence c#x, consequently s =

=x, q = ¢ and bec =xq is & subterm of t, a contradiction.

5.11. Lemma. pgla), qK(a)e M for every aeM.

Proof. Only for p. We shall proceed by induction on sub-
terms. Let bc be a subterm of p, bpla), cyla)eM, be(a) =
= px(d) and cyla) = qple)for some d, ee K. Since 1(p)=1(b),
p= bx(r) and re(a) =4 for some x#rekK. Since p is not re-
ducible, b = x and p = r. If q = cg(s) for some s& K then ei-
thez; s = x snd x.q is a subterm of p, a8 contradiction, or ¢ =
=x and q =8, pyp(d) = a = qgle), a contradiction. Thus ¢ =
= qx(n) and be = x.qx(n) is a aubterm of p, a contradiction.
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We ahall define a new binary operation o on the set M.
If a, beM and abe M then we put aeb = ab. Let a, beM and
abéM. Then there are r, s« X such that ab = pp(r).qp(s). As
it is easy to see, re M and r, s are determined uniquely. We
put aob = tK(r) (see 5.10). The following lemma is obvious
from 4.7.

5.12. Lemmg. aa&M for every ac M.

The next lemma is an easy consequence of 4.7, 5.10, 5.11,
5.12,

5.13. Lemma. (1) py(,)(a) = pyla), ay(,)(a) = agla) amd
ty(a)(a) = tgla) for' every ac M,

(i1) M(e) is a commutative groupoid without idempotent
elements.

(111) ty,y(a) = Py(a)(a) 0 gy(,)(b) for all a, beMs

(1v) pl(ﬂ,(e)*q“o)(b) for all a, beM.

5.14. Lemma. Let t, p, geK be such that p#q, lip) =
= 1(q) is a prime and 1(t)&1(p), Then t, p, q satisfy the
conditions (1),...,(7).

Proof. Easy.

5.15. Theoreme Let E (resp. K) -be the absolutely fres
(resp. free commutative) groupoid generated by x, y (resp. x)
and ¥ ¢ E— K be the homomorphism such that 4 (x) =x =
= ¢ (y). Let t, py qe X be such that var (p) = 1ix3 = var (1),
var (q) =4iy% and 1y (t), ¥ (p), ¥ (q) satisfy the condi-
tions (1),...,(7). Then the variety Mod (xy £ yx, t & pq) has
non-surjective epimorphisms.

Proof. Apply 5.6 and 5.13.
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5.16. Corollary. Let t, p, q& B be such that var(p) =
={x} = var(t), var (q) =4y}, 1(p) = 1(q) is a prime, 1l (t)%&
£1(p) and ¥ (p)$ ¥ (q). Then Mod (xy 2 yx, t 2 pq) has
non-surjective epimorphisms.

5.17. Exagpple. The varieties Mod (xy 2 yx, x 2
(x.xx) (y(yy.yy))) and Mod (xy & yx, xx.xx 2

w g

((xexx) (xx)) (y{y(y.y¥)))) have non-surjective epimorphisms.
The following lemma is evident.

5.18. Lemmg. Let p be a symmetric groupoid term. Then

every groupoid from Mod (p(x) 2 p(y)) contains exactly one
idempotent.

5.19. Proposition. Let § : B—>E be the endomorphism
such that € (x) =x = §(y). Let t, p, q€E be such that
var (t) =4x} = var (p), var (q) ={y?, §(p) = §(q) and t
is symmetric. Then the variety @ = Mod (xy £ yx, t £ pg) has
the strong amalgamation property.

Proof. Let G, He @ and A = GNH be a subgroupoid of
both G and H. Clearly, @ = Mod (t(x) 2 t(y)), and consequ~
ently A contains an idempotent e. Further, tA(a) =tG(b) =

= tH(c) = ¢ for all a€ A, b€G and ceH. Put B = GuH and
define ab

e = ba for all aeG, beH, a, bA. It is visib-
le that B e Q

5.20, Example. The variety Mod (xy 2 yx, xx.xx 2
2 ((xx)(x.xx))((yy)(y.yy))) has the strong amalgamation pro-
perty, and hence it has only surjective epimorphisms.

- 278 =~



[

2]

(31

[4]

{51

L6l

References

K. DRBOHLAV: A note on epimorphisms in algebraic catego-
ries, Comment. Math. Univ. Carolinae 4(1963),
81-85.

J.M. HOWIE, J.R. ISBELL: Epimorphisms and dominions
II, J. Alg. 6(1967), 7-21.

J.R. ISBELL: Epimorphisms and dominions I, Proc. Conf.
Categorical Algebra La Jolla, Springer Verlag
1966, 232-246.

JeR. ISBELL: Epimorphisms and dominions III, Amer.J.
Math. 90(1968), 1025-1030.

J.R. ISBELL: Epimorphisms and dominions IV, J. London
Math. Soc. 1(196%), 265-273.

T. KEPKA: Commutative distributive groupoids (to app-
ear).

Matematicko-fyzikéln{ fakulta

Karlova universita

Sokolovskéd 83, 18600 Praha 8

Beskoslovensko

(Oblatum 20.10.1976)

- 279 -



		webmaster@dml.cz
	2012-04-28T00:58:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




