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OOMMENTATIONES MATHEMATICAE uTOTERSITATIS CAROLIlfAE 

18,2 (1977) 

EPIMORPHISMS IN SOME GROuTOID VARIETIES 

Toma£ KEFKA, Fir aha 

Abstract: Two c lasses of groupold i d e n t i t i e s generat­
ing v a r i e t i e s with non-surjactive epimorphisms' are i n v e s t i ­
gated. 

Key words: Epimorphism, groupoid, var ie ty . 

AMS: 08A15 Ref. 2 . : 2 .725 .2 

Every variety of universal algebras can be viewed as m 

category of structures. In this case, a morphism is a monomor-

phism iff it is an injective homomorphism. The corresponding 

assertion for epimorphisna is not true. The first known exam-

plea of varieties with non-surjective epimorphisms seen to be 

the varieties of semigroups and rings. The reader is referred 

to*C13 for original proofs of these facts. The situation in 

semigroups was investigated in detail in (23 and [31. Some ge­

neralizations for algebras and categories were proved in I! 41 

and [5]. In this paper we deal with two methods which enable 

us to find a large number of groupoid identities generating 

varieties with non-surjective epimorphisms. The first one is 

in some sense a generalization of the classical method used 

for commutative semigroups* The corresponding identities are 

similar to the medial law xy.uv « xu.yv. The second method 

can be used for certain varietiea of commutative groupoide, 
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namely for thoae varieties, every groupoid of which haa at 

most one idempotent. 

!• Introduction. Let F be an absolutely free groupoid 

generated by a set X of variables. Elements from F are called 

(groupoid) terms, we define the length l(t) of a term t by 

l(u) * 1 for every ueX awl Krs) * l(r) • l(s) for all rf 

B€ f. .Further we denote by var (t) the set of all variables 

occurring in t« The notation t -* t(x/j,... ,xn) means that 

var (t) * 4 x^,...,xn^. If t is a term and u is a variable 

then o(t,u) is the number of occurrences of u in t. If G is 

a groupoid then tQ is the corresponding n-ary operation defi­

ned on 0 by means of the term t. If t, a are terms then 

Mod (t « s) is the variety of groupoids satisfying the iden­

tity t * s. We put t * Mod (xy * yx), J • Mod (x = xx) > 

if = Mod (x.yz ** xy.z), 7ft « Mod (xy.uv * xu.yv), 3) =* 

= Mod (x.yz -* xy.xz, zy.x =- zx.yx). The following lemma is 

clear. 

!•!• Lama- * A if S HI and ̂  n J i 3 . 

A groupoid identity t -* s is said to be quaslbalanced 

if o(tfu) * o(s,u) for every variable u. A groupoid variety 

is called quaslbalanced if It can be determined by a set of 

quaslbalanced identities* The following lemma is obvious* 

*•-*• I&iBaa* The following conditions- are equivalent for 

a groupoid variety % : 

Ci) If % S Mod (t * s) then t « s is quaalbalanced. 

(11) % is quaslbalanced. 

Ciii) < A ^ C 2£ . 
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2. Closed subgroupoida. Let G be a groupoid and a€ G, We 

define two mappings I*afRa of G into G by I*a(b) » ab and Rfi(b)* 

~ b» for every beG.The groupoid G is called left (right) can-

cellation(division) groupoid if L0 (Ra> is an injactiveCsur-

jective)mapping for every aeG. .Further, G is called a left 

(right) quaaigroup if LQ CRa> is bijective for every acO. 

.Finally, G is a cancellation groupoid if it ia both left and 

right cancellation groupoid. Similarly we define division 

groupoids and quasigroupa. 

Let H be a subgroupoid of a groupoid G. We say that B 

is a left closed subgroupoid of G if b€ E whenever a, b€ G 

and a, abe H. Similarly we define right closed and closed sub­

groupoida. If M £ G is a subset then C1Q(M) denotes the left 

closed subgroupoid generated by M. Similarly we define cr^CM) 

and cG(M). A subgroupoid K S G is called left dense if clQ(K)« 

-* G. Similarly we define right dense and dense subgroupolds* 

The following two lemmas are easy. 

2«1« Lemma. Let E be a subgroupoid of a groupoid G«. 

Then H is a left dense (resp. right dense, dense) subgroupoid 

of cl0(H) (reap. crG(H), C Q C H ) ) . 

2*2. Lfimmj. Let H be a left (right) closed subgroupoid 

of a left (right) division groupoid G. Then H is a left (right) 

division groupoid. 

2*3. Lemma. Let H be a left (right) dense subgroupoid of 

a groupoid G and f, g be two homomorphisms of G into a left 

(right) cancellation groupoid K such that f | H « g\ H . Then 

t » g. 
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£££££. Put A -* {a* G | f(a) = g(a)? . Then He A and A is a 

subgroupoid of G. Moreover, A is a left right closed subgrou-

poid, aa one may check easily. Hence A * G . 

2»4. Lemma. Let H be a den8e subgroupoid of a groupoid G 

and f, g be two homomorphiams of G into a cancellation groupoid 

K such that f 1 H * g I H. Then f » g. 

Proof. Similar to that of 2.3. 

A groupoid G is said to be an LN-groupoid (RN-groupoid) if 

every factorgroupoid of the cartesian product G x G is a left 

(right) cancellation groupoid. Further, G ia an Nrgroupoid if 

it ia both an LN 8nd RN-groupoid. The following result is not 

difficult. 

2*5* l»emma. (i) Every group ia an N-quasigroup* 

(ii) Every quasigroup from ^ a 3> is an N-quasigroup. 

The class of quasigroups can be considered as a variety of 

algebras with three binary operations. The following lemma is 

evident. 

2*6. Lemma. k®* G be a subgroupoid of a quasigroup Q. Then 

G is a dense subgroupoid of Q iff Q is generated by CI as a qua­

sigroup. 

3. Medial groupoids and .generalizations. Let t =* 

* t(x^,...,xn) be a term. We put 

lT(t) -* Mod (t(x^ yif...,xnyn) * t(x< 9...,xn).t(yi9...,yn)). 

For example, if t » x.yx then 

V(t) =-Mod (xiyf.(x2y2,.x1yf) * (z4.x2zj(y^y2^)). 

3 . 1 . Lfl.ffiffltS. m * tT(xy ) . 

PrjapJJ. Easy. 

3 .2. iejmi§. MS 1f (t) for every term t . 
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Proof, By induction on l(t). 

3»3» Lemma. Let t be a term. Then Mod (x = t) £ ̂ ( t ) . 

Proof. Easy. 

Let t = t ( x f y ) be a term and G be a groupoid. We sha l l say 

that G i s a t-complete groupoid i f for a l l af be G there are c f 

d£G such that t G ( a f c ) » b * t G ( d f a ) . The following lemma i s c lear . 

3*4. Lemma. Let t = xy and G be a groupoid. Then G i s t - c o ­

mplete i f f G i s a d i v i s i o n groupoid. 

Let R(+) be the additive group of rat ional numbersf P be the 

set of pos i t ive rat ional numbers and ao b = 4 / 2 ( a • b) for a l l a t 

b 6 R. The next lemma i s almost obvious. 

3 .5 . lifiJBBa* (1) R(+)e *£ r\ \$ f R(+) i s an N-quasigroup and 

P(+) i s a dense subgroupoid of R(*)# 

( i i ) R(o) € 1YI A <£ n J f R(o) i s an N-quasigroup and P(«) 

i s a dense subgroupoid of R(o) . 

( i i i ) R(+) f R(o) € l r ( t ) for every term t . 

( iv ) R(+), R(o) are t-comp lete for every term t = t(x,y . .» 

3»6. Lfifflaa* Let t = t ( x f y ) be a term and K, H be two sub-

groupoids of a groupoid G e 2 r ( t ) . Suppose that K, H are t-com­

p l e t e , Kn H i s non-empty and G i s generated by KuH* Then G i s 

a homomorphic image of the cartes ian product KxH. 

Proof. Define f: KxH—>G by f ( a , b ) = t G (a ,b ) for a l l a c K 

and b€ H. Since G € V (t) f f i s a homomorphism. Let a e K n H and 

b e H be arbi trary . There i s c c H such that b = t H ( a , c ) . However 

t f i ( a f c ) = t G ( a f c ) = f ( a , c ) . Hence H s l m f. S imi lar ly K s l m f and 

Im f = G. 

3 . 7 . Propos i t ion . Let t =- t ( x , y ) be a term and G e tT(t) 

be a t-complete LN-groupoid (RN-groupoid). Let HSO bi a l e f t 

( r igh t ) dense subgroupoid. Then the inc lus ion H S G i s 
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an epimorphism in 1A(t). 

Proof. Let f, g: G—*K be such that K 6 ^ ( t ) and 

f t H =- g I.H. ITe can assume that K i s generated by AuB, whe­

re A » Im f and B -» Im g. The groupoids Af B are homomorphic 

images of Gf and therefore A, B are t-complete. Further, 

fCH) *g(H)SAnB. By 3 .6, K i s a homomorphic image of A*B* 

However A*B i s a homomorphic image of G?<Gf and consequent­

ly K i s a le f t (right) cancellation groupoid. An app l icati­

on of 2.3 finishes the proof. 

3 .8 . Proposition. Let t » t(x fy) be a term and G e #*(t) 

be a t-complete N-groupoid. Let HSrG be a dense subgroupoid. 

Then the inclusion H£G i s an epimorphism in V ( t ) • 

Proof. Similar to that of 3 .7 . 

3 .9. Corollary. Let Q be a medial N-cpasigroup generat­

ed as a quasigroup by a subgroupoid G. Then the inclusion G£Q 

i s an epimorphism in the variety /fll # 

Proof. Apply 3 .8 f 3 .1 , 3.4 and 2.6. 

3 .10. Theorem. Let t be a groupoid term containing at 

least two variables. The following varieties have non-surjec-

tive epimorphisms: 

( i ) Every variety % such that <£ c\ <f £ <& fi l T ( t ) . 

( i i ) Every variety % such that fmn<€n3s%& 

S V Ct). 

( i i i ) Every variety % A 1/"(t)f where 11 i s a quasi-

balanced variety. 

(iv)) The variety generated by *£ n tf and 

Bfod (x -3- t ) . 

Proof, ( i ) It i s easy to see that there exists a term 
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s -* s(x,y) such that lT(t) & 1f ( s ) . According to 3.5 and 

3 .8, the inclusion P(+)£R(+) i s an epimorphism in V ( s ) , 

and hence in 1/(%)• 

( i i ) Similarly as for ( i ) . 

( i i i ) and ( i v ) . Clearly, tr\ tf & 11 n V (t) £ V (t) and 

Mod tx = t) fi V(t). 

Let I be a groupoid variety. We shall aay that % sa­

t i s f i e s the condition (M) i f G is a cancellation groupoid, 

whenever G e 11 and G/r i s a quasigroup where r i s the least 

congruence with G/r e 1U • 

3 .11. Proposition. The variety <£ n Q sa t i s f i es (M). 

Prooff. See I6J, Lemma 8.5. 

3.12. Proposition. Let a groupoid variety % satisfy 

(Iff) and Q e % be an N-quasigroup. Let GSQ be a dense sub-

groupold. Then G£Q i 8 an epimorphism in 11 • 

Broof. Let f, g: Q—* K, K & 1L and f I G » g 1 G . We 

can assume that K i s generated by Im f u l l g. Similarly as in 

the proof of 3 .7 , we can show that K/r is a quasigroup whers 

r i s the least congruence with K/r e Hfl (use 3.4 and 3.1)* 

Hence K i s a cancellation groupoid and the rest i s clear. 

3 .13 . Corollary. The varieties 171, 171 n 7, M f\ <£ 91h rs %, 

%r\ <2>,^atf, <3>n<e, T t t n ^ A ^ ^ A <£ A 3 , 171 A <€ n, £ 

have non-surjective epimorphisms. 

4» Several igmjBffig- Let f (reap. K) be the absolutely 

free (resp. free commutative) groupoid generated by x. Let 

<ap : F —> K be the canonical homomorphlsm. The following three 

lemmas are easy. 
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4 .1 . i.«Jffl3* Let a, b, c, deK and ab * cd. Then either 

a? =* c, b » d or a ** d, b * c . 

4 .2 . Lejjaa. Let a, b € F and 9(a) * <J>Cb). Then l(a) s 

• 1(b) . 

4 .3 . IjfJUBa* Let a, be J?, cp (a) * 9(b) and G be a com­

mutative groupoid. Then aG =* bQ. 

Let pfiK, qCF be such that y (q) = p and I b e a commu­

tative groupoid. We put lCp) = l(q) and pG * CJQ. 

4 .4 . Lifflffla. Let p, q, ae K and P^(a) * q-̂ Ca). Then p = 

» q. 

Proof. By induction on l(p) -»- l ( q ) . 

4.5. Lejaaa. Let p, q, a, beK. Then PK(a) » qK(b) i f f 

at least one of the following conditions holds: 

( i ) p »*qK(r) and *K(a) ** b for some re K. 

( i i ) q » Pjf(r) and rK(b) =* a for some rcK. 

-Proof. The direct implication can be proved easily by 

4.4 and induction on l(p) • l ( q ) , while the converse implica­

tion ia trivial* 

An element pc K i s called reducible i f p -* qK(r)- for so­

me q, r e K, q#x4-r . The following lemma la trivial* 

4.6 . iama. Let peK be such that l(p) i s a prime. Then 

p i s not reducible. 

4*7. Lemma. Let p, qcK be not reducible. Suppose that 

p4-q and p4*x4»q. Then Pg(a)+ qK(b) for al l a, beK. 

Proof. V&i 4 .5 . 

Define a relation 4J on K by a ̂  b iff b * ac for some 

ceK. Let $ denote the least reflexive and transitive rela­

tion containing % . If a, be K and a p b then we shall say 

that a ia a subterm of b. Finally we ahall define symmetric 
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groupoid terms by induction. Every variable ia a symmetric 

term. If t ia a symmetric term then t t ia symmetric. 

5. Commutative groupoida. Let % be a groupoid variety. 

Then T (%) denotea the claaa of al l G € % with the fo l lo ­

wing property: If eeiG then there exiata a groupoid E e 11 

such that H - G w - i e i y e la an idempotent and G la a aubgrou-

poid of H. 

->•*•• Fropoaitlott. Let % be a groupoid variety auch 

that every groupoid from % contains at moat ine idempotent. 

Let W € % and G be a 8ubgroupoid of H auch that H « S w { i j 

and e ia an idempotent. Then the inclusion G£ H la an e pi mor­

phia m in % • 

Proof. Let A a % and f, g be two homomorphiama of H 

into A such that f I G = g \ G. Since e la idempotent, f(e) and 

gCe) are aof and consequently f(e) =* g(e) . Thua f * g. 

5.2. Corollary. Let % be a groupoid variety auch that 

every groupoid from % contains at moat one idempotent and 

T (% ) ia non-empty. Then % haa non-aurjective epimorph-

isms. 

Let £ (reap. F) be the abeolutely free groupoid generat­

ed by x9 y (reap. x ) . We ahall assume that F ia a aubgroupoid 

of E. .further, let t , p, q c f be auch that t , p€ F and 

var (q) =My? . Put & * Mod (xy » yx, t * pq). 

5-3. Lemma. Every groupoid from & contalna at moat one 

idempotent. 

Pfroof. Let G * & and a, b€ G be idempotenta. Then a =-
36 t G t a ) " %^)»Qo^b) a *b » b« * tQ(b) « b. . 
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5»4. Lemma. Let G c &, and a, b€G be such that p^a)* 

=* p^b) . Then tQ(a) * tQ(b). 

Proof. Obvious. 

5.5. Lemma. Let G c <X . The following conditions are 

equivalent; 

(i) ® e <rca> . 
( i i ) Pa(G)AqG(G) i s empty. 

Proof, ( i ) implies ( i i ) . Let G, H € Q, , H * Gu-Cei, 

#e » • and pQ(a) * q^b) for some a, be G. Then tQ(a) -

* %(a).e * e.qg(b) =- tjj(e) - e, a contradiction with e4G. 

( i i ) implies ( i ) . Let e±G and H « G u « i e | . Put a o b * 

-* abt e o e » e, e o pG(a) =* tQ(a) -»= F(j(a) ° e , e o c - e = * c o e 

for a l l a, b, ceG, e#pG(G). As i t i s easy to see, G i s a 

subgroupoid of H(o) and H(a) c Q, -

5.6. JSPXfiliflSX* L«* tf p, q be three groupoid terms such 

that var (t) * 4 x } » var (p) and var (q) » 4 y ? . Let Ct =* 

» Mod (xy * yx, t =- pq) and suppose that there exists a grou­

poid G 6 <L such that pQ(a)4- q^b) for al l a, beG. Then the 

variety & has non-surjective epimorphisms. 

5.7. Proposition. The variety Q, =-= Mod (x.xx * 

=* (x.xx)((y.yy)(y.yy)), xy » yx) has non-surjective epimorph­

isms. 

Proof. Let G *-40,lf and 0.0 » 1 , 1.0 * 0.1 » 1.1 ~ 0. 

One may check easily that G € & and a.aa4-(b.bb)(b.bb) for 

a l l a, bcG. Now we can use 5.6. 

5.8. PrppogjUop. The variety (X * Mod (xy * y x , x = 

^ (xxKy.yy)) has non-surjective epimorphisms. 

Proof. Let K be the free commutative groupoid generated 
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by x and M be the set of all p e K such that non (aa)(x.xx)<p p 

and non b.bb <p p for all a, b€ K, b4-x. If a, bcM and abc tf 

then we put a o b s ab. .Further we put aaox.xx « a - x.xxoaa 

and aoaa 2 x.xx =* aa o a for every aeM. We have defined a 

groupoid M(o) and M(o) e (X , as one may verify easily. Cle­

arly, a o a + b o (bob) for all a, beM. Now we can use 5.6. 

Let K be the free commutative groupoid generated by x 

and t, p, q € K be three elements satisfying the following con­

ditions: 

(1) p, q are not reducible. 

(2> p#q. 

(3) non x.q K(a)^p for every aeK. 

(4) non x.q-^(a)pt for every aeK, 

(5) non x.p-,(a)$>q for every aeK. 

(6> non x.pj-.(a)f>t for every aeK. 

(7) non pjr<a).qK(b)p t for all a, be K. 

5«9« Lemma. p4-x and q4»x. 

Proof. Let p * x. Since p#q, q4=x and l(q)> 2. In par­

ticular, xx = xp is a subterm of q, a contradiction. Similar­

ly q-M. 

Let M be the set of all r e K such that non PjjXaKq-^b)^ r 

for all a, be K. It is visible that pf q, t e M. 

5*10. Lfina. tj-.(a)€M for every aeM. 

Proof. We shall prove by induction on l(k) that kg(a) e 

€ M for every subterm k of t. If k - x then there is nothing 

to prove. Let k =- be, bj^(a)eM and cK(a)eM. If b--.(a).cK(a) e 

e M then kg(a)e M. Suppose that b^(a).c-^(a) 4> M« Then there 

are d, e e K such that P j - ( d ) . q . K ( e ) p bj^alc-^a). However bK(a) , 
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eK(a)eM, and hence pK(d).qK(e) = bK(a)»cK(a)* We shall assu-

me that Pj^d) =* bK(a) and qK(e) - c-̂ -Ca) (the other case i s 

similar)• Taking into account 4.5, we have the following pos­

s i b i l i t i e s : 

( l ) b =* Pjr̂ r) and c = qK(s) for some r, s c K. Then PK(r). 

•qK(8) i s a subterm of t , a contradiction. 

( i i ) b * FK(r) and q * c^(e) for some r, ae K. I f c - x then 

be = pK(r).x ia a sub term of t , a contradiction. Hence c-*-x, 

and flos-i, since q is not reducible. Consequently q = c 

and be * pK(r).qK(x) i s a subterm of t , a contradiction. 

( l i t ) p = fefct?) a n d c s ^K^8' f o r s o m e r» 3 £ K- T n i s case 

is similar to the preceding one. 

Civ) p a-- bK(r), q » csj-Xs) and rK(d) = a = s^ie) for some r, 

8€ K. If r a x = a then we get a contradiction with t e M# 

Hence either r4=x or a4-x. However p, q are not reducible and 

so either b s x or c * x. Let b =* x (the other case i s simi­

lar) . I f c =- x then p - r, q =* a and Pj^d) =* a -* qK(e), a 

contradiction with 5.9 and 4.7. Hence c4=x, consequently s » 

« xf q =-- c.and be * xq ia a subterm of t , a contradiction. 

5*11* Lemma* Pj-^a), qK(a)cM for every acM. 

Proof. Only for p. We 8hall proceed by induction on sub-

terms* Let be be a subterm of p, bgCa), cK(a)«M, b-->(a) = 

s* pK(d> and c-j-ta) ** qK(e)for some d, eeK. Since l (p)>l (b)> 

p «* b^Xr) and rK(a) ** d for 8ome x # r c K . Since p is not re­

ducible, b = x and p = r. If q * cK(s) for some s€ K then e i ­

ther a =- x and x.q ia a subterm of pf a contradiction, or c = 

=- x and q =* a, Pj-.(d) = a == qK(e), a contradiction* Thus c = 

= qK(m) and be = x.qK(m) la a aubterm of p , a contradiction. 
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We sha l l define a new binary operation o on the s e t M. 

I f a, be M and abc M then we put a o b * ab. Let a, beM and 

ab*)M. Then there are r f a c K such that ab = pjr(r) .qK (a) . 4s 

i t i s easy to s ee f r e M and r, a are determined uniquely. We 

put a o b = t g ( r ) ( see 5*10)* The fol lowing lemma i s obvious 

from 4 . 7 . 

5 .12 . LejEBM- a««M for every aeM. 

The next lemma i s an easy consequence of 4 . 7 , 5 .10, 5.141, 

5 .12 . 

5 .13 . Lemma, ( i ) P | f (o) ( a ) * P w / a ) i % ( o ) * a ) s %^a) a n d 

t K ( d ) ( a ) - t g (a ) for' every aeM, 

( i i ) M(o) i s a commutative groupoid without idempotent 

elements. 

( i i i ) t M ( o ) ( a ) * % U ) ( a ) Q % ( o ) ( b ) f o r a 1 1 a» D 6 M * 

( iv ) Pn ( 0 ) / a ) s * '%Co)^) ' o r a l l a, beM. 

5 .14 . Lemma. Let t , p f qeK be such that p4»q, lCp) « 

-» l ( q ) ia a prime and l ( t ) - 4 l ( p ) . Then t , p, q s a t i s f y the 

conditions ( 1 ) , . . . , ( 7 ) . 

P££pj£. Eaay. 

5.15. Theorem* Let E (reap. K) be the absolutely frea 

(reap, frea commutative) groupoid generated by x f y (reap* x) 

and Y : E —> K be the homomorphism such that ^ (x) « x » 

* tff ( y ) . Let t , Pt q e l be such that var (p) * i x * * var ( t ) # 

var (q) - * * y l and ^ r ( t ) , T < p ) i Y lq) aat ia fy the condi­

t ions ( l ) f . . . f ( 7 ) . Then the var ie ty Mod (xy • yx , t » pq) haa 

non-surject ive epimorphisms» 

Proof. Apply 5.6 and 5 .13 . 
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5.16. Corollary. Let t , p, q d be such that var(p) at 

=--Cxi 9 v a r ( t ) , var (q) =--ty} , l (p ) » l (q ) ia a prime, l(t)-= 

* lCp) and y ( p ) + * ^ ( q ) . Then Mod (xy = yx, t == pq) haa 

non-surject ive epimorphiams. 

5 .17 . Example. The v a r i e t i e s Mod (xy =- yx, x « 

* ( x . x x ) ( y ( y y . y y ) ) ) and Mod (xy « yx, xx.xx =* 

-» ( ( x . x x ) ( x x ) ) ( y ( y ( y . y y ) ) ) ) have non-surjective epimorphisms. 

The fol lowing lemma ia ev ident . 

5 .18. Lemma. Let p be a symmetric groupoid term. Then 

every groupoid from Mod (p(x) =* p(y)) contains exact ly one 

idempotent. 

5 .19 . Proposit ion. Let £ : £ —* E be the endomorphism 

such that ^ (x) » x -« f ( y ) . Let t , p, q 6 1 be such that 

var ( t ) »« tx i * var ( p ) , var (q) =-«£y? , f (p) * f (q) and t 

i s symmetric. Then the var ie ty d » Mod (xy » yx, t = pq) has 

the strong amalgamation property. 

Proof. Let G, H £ Ct and A = GnH be a subgroupoid of 

both G and H. Clearly, CI £ Mod ( t ( x ) * t ( y ) ) , and consequ­

ent ly A contains an idempotent e . Further, t^(a) - tQ (b) -

=s t H ( c ) =- e for a l l a € A, bcG and c cH. Put B » G u H and 

define ab -* e * ba for a l l a e G , b c H, a, b^A. I t i s v i s i b ­

l e that B € a 

5 .20. Example. The var ie ty Mod (xy -* yx, xx.xx -̂  

£ ( C x x ) ( x . x x ) ) ( ( y y ) ( y . y y ) ) ) has the strong amalgamation pro­

perty, and hence i t has only surject ive epimorphisms. 
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