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1. Introdyction. Let (X,d) be a metric space, P(X) the

class of all non-empty bounded closed subsets of X and D the
Hausdorff metric on P(X) induced by d. Given a subset K of X,
& mapping T: K—> P(X) is said to be (i) contractive on K if
D(?(x),T(y) )< d(x,y) for all x,y in K with x+y and (ii) in-
ward on K if for each x in K, there exists v & K such that
d(x,v) + d(v,T(x)) = a(x,T(x)), where v4x unless d(x,T(x)) =
= 0, where d(x,T(x)) = inf {d(x,y) | ye T(x}§ . In case T is
single-valued, the notion of "a contractive mapping" was
first introduced by M. Edelstein in [3] and the notion o "an
inward mapping" was called "g metrically inward mapping" in
[21.
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The concept of inwardness for mappings defined on topo-~
logical vector spages was first studied by B.R. Halpern in
his thesis [4). Recently, many interesting z:esults related
to this concept have been obtained by F.E. Browder, Halpern-
Bergman, K. Fan, Petryshyn-Fitzpatrick, W.A. Kirk, J. Caris-
ti and by many others. See [ 2] and [5] for more detailed re-

ferences.

2. Main results. W.A. Kirk pointed out ([21], Remarks)
that Caristi’s results Theorem (2.1)°, Theorem 2.1 and hence
also Theorem 2.2 can be proved by using a result of A. Brénd-
sted ({11, Theorem 2). For our purpose, we shall state s par—

ticular case of Bréndsted s result below.

Lemmg 1. ([11, Theorem 2) Let (M,d) be a complete met-
ric space. If 4) is a lower semi-continuous mapping from M
into [ 0,0) then for each xe M there exists a point ueM
such that d(x,u} £ ¢ (x) - ¢ (u) and d(u,y) > ¢ (u) - ¢ (y)
for all ye M with ysu.

We shall show that the above lemma can be used to gene-

ralize Caristi’s results for multi-valued mappings:

Theorem 2: Let (X,d) be a metrie space and K a non-em-
pty complete subset of X. Suppose that T: K— P(X) is in-

ward on K and is also a contraction:
D(T(x),T(y))& x d(x,y), for all x,yeK

where k € [ 0,1) is a fixed constant, Then T has a fixed point
in K,

Proof. Define ¢ (x) = T._‘ET d(x,T(x)) for xeK. Then
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4) is continuous as T is a contraction. By Lemma 1, there
exists ue K such that

(%) d(u,y) > & (u) - $(y), for all yeX with y$u.

We claim that d(u,T{u)) = O. Suppose this were not trus. Sin-

ce T is inward on K, there exists ve K with v#u such that

dfu,v) = du,?(uw)) - d(v,T(w))
£d(u,T(u)) - Ld(v,P(v)) = D(T(v),T(w)3I
£ du,T(u)) - d(v,T(v)) + k d{v,u)

Thus d(u,v) & ¢ (u) - ¢ (v), which contradicts (). There-
fore, d(u,T(u)) = O and hence ue T(u) since T(u) is closed.

Another application of Lemma 1 gives us the following:

Theorem 3. Let (M,d) be a complete metric space and £
a mapping defined on M such that for each xeM, f(x) is a
nonempty subset of M. Suppose that there exists a lower semi~-
continuous function ¢ : M—> [ 0,c0) such that one of the
following conditions holds:
(A} For each xe M,
D(x,f(x)) & $(x) - $(u), for some ue £ix).
(BY For each xe M, f£(x) is compact and d(x,f(x)) £
£ & (x) - $(u), for all uefix).
Then there exists uje M such that uje £lu,).
Next we shall show that if the set K in Theorem 2 is
compact, then the condition that T being a contraction can

be weakened to being "contractive”.

Theorem 4, Let (X,d) be a metric space and K a compact
subset of X. Suppose T: K—» P(X) is inward on K and is al~
so contractive on K, then T has a fixed point in K.
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Proof. Since T is contractive on K and K i1s compact,
there exists u X such thet

a(u,T(u)) = inf {d(x,P(x)): xeK}.

We claim that d(u,T(u)) = 0. Suppose this were false. Since
T is inward on K, there exists ve K such that varu and

dfu,v) + dalv,T(u)) = d(u,T(u)). Sines d(v,T(v))<£dlv,T(u)) +»
+ D(T(u),T(v)) and since T is contractive, one has d(v,T(v))<
< d(u,T(u)), which contradicts the choice of u in K. Thus

d(u,T(u)) = O, Hence ue T(u) since T(u) is closed.

Finally, we remark that even when T is single-valued,
Theorem 2 (i.e. Theorem 2.2 in [2]) and Theorem 4 are incompa=~
rable in the sense that neither is more general than the ot~

her.
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