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Absiract: We prove fixed point theorems for multivalued
generalized contraction and contractive mappings in metrical-
ly convex metric spaces. Theorem 1 generalizes a fixed point
theorem of Assad-Kirk for multivalued contraction mappings,
Theorem 2 that of Assad for multivalued contractive mappings.
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tive) mapping, metrically convex metric space.
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1. Introdyction. Recently fixed point theorems for mul-
tivalued contraction or contractive mappings were obtained by
Nadler (9], Assad-Kirk [1] and Assad (2], etc. On the other
hand, Kannan [ 5] initiated studies of certain type of mappings
which have many similarities to contraction and nonexpansive
mappings. His ideas were further studied and generalized by
Reich [10], %iri& [3]1, Kannan [ 81, Hardy-Rogers [ 51, Goebel-
Kirk-Shimi [ 4] and Wong [11, 12, 13), etc.

In this paper we shall give fixed point theorems for mul=-
tivalued generalized contraction mappings and generalized con—
tractive mappings. Theorem 1 is an extension of a theorem in
Assad-Kirk [ 1]. Theorem 2 extends a fixed point theorem in As~-
sad [ 2].
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2, Preliminarjes. Let (X,d) be a metric space. For any
xe X and Ac X, we denote d(x,A) = Inf {d(x,y): yeA%. It can

easily be checked the following lemma.
Lemmg 1. For any x,y€X and AcX, we have
la(x,A) - d(y,a) | & d(x,y).

Let €¢B(X) denote the family of all nonempty closed
bounded subsets of X and D be the Hausdorff metrie on <€B(X)
induced by the metric d on X. The following lemmas are direct
consequences of the definition of Hausdorff metric.

Lemmg 2. If A, B € €RA(X) and xe A, then for any posi-
tive number € , there exists a' ye B such that

d(x,y)& D(A,B) + & .

Lemma 3. For any x€ X and any A, B € €R(X), it follows

that
| a(x,A) - d(x,B)| &« D(a,B).

(X,d) is said to be metrically convex if for any x, ye X

with x# y, there exists an element z¢ X, x4 za#y, such that

d(x,z) + d(z,y) = d(x,y).
In Assad and Kirk [ 1] the following is noted.

_I_-'s_m_f. If K is a nonempty closed subset of a comp—
lete and metricallyf:onvex metric space (X,d), then for any
x¢ K, Y¢K, there exists a z & @K (the boundary of K) such
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that

d{x,z) + d(z,y) = a(x,y).

3. Generalized contraction mappings. Let K be a nonem-
pty closed subset of a metric space (X,d) and T be a mapping
of K into € B(X). T is said to be a generalized contract-
ion meapping if there exist nonnegative real numbers o<, 3,

4 with &< + 23 + 29 < 1 such that for any x, yeKk,
D{T(x),T(y)) & xd(x,y) +B4i(alx,T(x)) + d(y,T(y)))3
+ yialx,T(y)) + d(y,T(x))} .

If B =9 =0, then T is called < -contraction.
The following theorem holds.

il‘hggrem l., Let (x,d) be a complete and metrically con-
vex metric space, K a nonempty closed subset of X. Let T be
a generalized contraction mapping of K into €M (X). If for
X Tlor i < 1, then the-

any x € 8K, T(x)c K and 1-3 -9 ’

re is a z €K such that z€T(z).

(ceB+)(1 +B+
Proof. Denote k = (1-8 - '3')%_11 , then0&k<1.,

If E = 0, then the conclusion of Theorem 1 is obvious. So we

may assume that k>0. We choose sequences -ixn'i in K and
4¥n3 in X in the following way. Let x, e K and x; =y; €
€ T(xo). By Lemma 2, there exists a y,& T(x;) such that

a3y 47,) & D(T(x,),T(x;)) + h'fsﬁ??? '
If yye K, let x, = y,. If Y24 K, choose an element xye K such
that d(xl,xz) + d(xz,yz) = d(x),y,) using Lemma 4. By indue-

tion, we can obtain sequences . 4xn} ’ -iyn§ such that for
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N =1,2,000,
(1) yp.q€T(xy),
(2] alyqa¥p,y) & DTlxy 1), T(x,)) + {—;—%-;—g X",
where
(3) ¥p41 = Xpey 1 ¥p € K, or
(4) alxp,x ) + A(xp4y 9T pey) = Alxp,¥p4y) 1 ¥ €K,
We shall estimate the distance d(xn,xn_,_l) for nZ 2.
There arise three cases.

(1) The case that x;, = y, and Xn4) = Ype1e We have

d(xn,xml) = d(yn'yml)

€ D(TGx, ), Tixy)) + 45T W0

€ d(xy_q,%y) + ALd(x,_y,T(x, 1)) + dlx,Tlx,))3

+ ¢ 4d(xp ), Téx I) + dlx,,P(x, 1))} + +’:‘%::§ K"
€ ot dlxyy,%p) * BLdlx, y,xp) + dlxp,x 128

-
+ 7{d(xn_1,xn), + d(xn’xn-rl” -%—*%-;-7—;

hence

(1 =@ =2)alxg,x ) % (o B +g)alx,_1,x,) + —%—7%;%

n
o<+ P
d(xnsXpyy) € rrﬁf'?,:— dxpeixg) * TIATF -

(11) The case that x, =y, and x ., %y, By (4) we
obtain that

and

d(xn,xml)é d(xn,yn,_l) = d(yn'yml) .

As in the case (i), we have :
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<+ [P+ 2 n
Wrpp¥pe) & Togeg Ape®) * TS5 o

thus

<+ B n
d(xn,xn+l)£ I-Tp_-% d(xn_l,xn) + ﬁﬁ— .

(111) The case that x %y, and X 4 = Ypayc In this ca-

se X, _, = ¥,_; holds. We have

alxp,x .)€ d(x

n+l )+ alyp,x

arn ne1) = 9(xpayp) + dlyp, v,

By (2) it Zollows that

Ay ¥ey) & D(T(xy 1), 2xy)) + }—;1(’3—;-5% 0

&ccd(xy_;,x,) + BLdlx T(x,q)) + dlx,,T(x))3

n-1?

+ydalxyy,Mx))) + alx,,Tx,_;))3 » }—}g—:—? k2
& ocdlxy_q,xp) + Bidlx,_y,¥y,) + alxp,x ,,))3

sy ddlxpg,xy) + dlxp,x 0) + dlxp,y)8 + %":‘%i% k™.
Since 0£cc < 1 and dlx,_y,xp) + dlxg,y,) = dlx_y,¥,), we

obtain

d(xn,xml)é (1 +9)alxy,y,) + (e +2)dlx,_,,x,) +

* Balrp Ty * (BeP)alrgxyy) + H5E5L W
£ (1 +gdalx,_,,y,) + Balx,_y,¥y,)
+ (Baydalxy,x ) + H‘;,—:—% ",
and

n

d(xn'xn.',l 1__%__%- d(xn_ltyn) * 1 *ﬁ*? 4

As in the case (11),we have

+ (3 kn-l
alx,_y,¥,) & 9‘—-5——11 ~A—7 alx, _»9Xyy) *+ 5857 °
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Thus it follows that

alxp,x,,) 4 {2Brr)Q2B22) g(x o x o)

(1 =-3-29)
n=-1 kn
‘l—a-y * I+pg+7r °
The case that X % ¥p and xn+1+ el does not occur. Since

“’13’ r 3 L“*MSLM for n= 2 we have
l=p-7 (1 -f-2)2 ’

n
kd(xn_l,xn) + 1—:%—_—2; , Or

kn—l N n’
W(x %) + e

1
Put O = k2 max (Il xg = x3ll, lx; = x50 ), then by induction

d(xn,xnﬂ) £ {

we can show that

Alxp,x 1 )& k% (o +» I—_-?f_—? ) (n=1,2,...).

It follows that for any m>nZX1,
1
ma1 4 -y 3,1
T,1 1(k* ).
Alxp,xp) & & = (8%)0 » 1—:]5:7,— Zom

This implies that 4x,} 1is a Cauchy sequence. Since X is com-
plete and X is closed, ixn} converges to some point z € K. By
the way of choosing {x_ } , there exists a subsequence {x 3}

By

of {x,3 such that xni = yni (1 =1,2,...). Then we have

d(xni,‘r(s) )4 D(T(xni_l) yT(z))

& e&d(xn‘_l,z) + 4 d(xni_l,’.l‘(x 3) + d(z,1¢2)) ¢

ny-1
. T(d(xni_l,’r(z)) + d(z,T(xni-l))f

“ oddalxp ypxp ) # a(:ni.m + fdatay 1%y )
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+ d(z,xni) + d(xni,T(z))} - 7{d(xni_l,xni)

+ d(xni,T(z)) + d(xni,z)} ,
thus

(1 —ﬁ-r)d(xni,!l‘(z))/"v(oc*- B+y) {d(xni,z) + d(x 3

ny-1*%ny
and

x+0+ al ) +d( " .
d(xni,'l'(z)) 9 r—:—g—_—?{ xni.z Xni_lyxni ?

Therefore, d(x, ,T(z))—>= 0 as 1 —» o . By the inequality
xni
d(z,T(z))éd(xni,z) * d(xni,'l’(z))

and the above result, it follows that d(z,T(z)) = 0., Since
T(z) is closed, this implies that ze T(z). q.e.d.

Since every Banach space is metrically convex, we have

the following corollary for singlevalued mappings.

Corollary l. Let E be a Banach space and K be a nonemp-
ty closed subset of E. Let f be a generalized contraction
mapping of K into E. If £(3Klc K and

{co I_ﬂ(_l,; * < 1, then there exists a (unique) fixed

point of £ in K.

3. Generaljized contractive mappings. Let K be a non-
empty closed subset of a metric space (X,d). Let T be a map~

ping of K into <€ B(X). T is said to be a generalized cont-
ractive mapping if there exist nonnegative real numbers oc ,

( » 3 such that for any x, y €K with x#y,

D(T(x),T(y)) <« edlx,y) + B{d(x,T(x)) + d(y,T(y))}
+y{d(x,T(y)) + aly,T(x))} ,
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where 0<cc + 23+ 29 £ 1, If 3 29 =0 and o< =1, thenT
is called contractive. T is said to be continuous at x e K
if for any € > O, there exiasts a J"> 0 such that
D(T(x),T(x,)) = € whenever d(x,x,)< o . If T is continu-
ous at each point of K, we say that T is continuous on K.

We shall give a fixed point theorem for continuous gene-

ralized contractive mappings.

Theorem 2. Let (¥,d) be a complete and metrically con—
vex metric space and K be & nonempty compact subset of X. Let
T be a generalized contractive mapping of K into ¥B(X) and
continuous on K. If for any x € 8K, T(x)c K and

MLL%@-L&— £1, then there exists an element z&€K
1 =-f=-9)
such that ze T(z).

Proof. Define a function g of K into r* (nonnegative
real numbers) by g(x) = d(x,T(x)) (xe€ K), then by Lemma 1 and
Lemma 3, we have

lglx) - g(y) 1 &1 a(x,™(x)) - a(y,T(x) |

+ la(y,™(x)) - d(y,?(y))) & a(x,y) + D(T¢{x),T(y)).
Hence g is continuous and since K is compact, there exists a
ze K such that g(z) = min g(x): x€ K3 . Suppose that g(z)>0,
then we obtain a contradiction. For each n = 1,2,..., there
exists a x,€ T(z) for which
d(xn,ﬂ‘g(z) * % .

If x €K for n sufficiently large, then some subsequence

{xnil of {x,} converges to an x,€ K. We may assume that

xo* z, then
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glx,) = d(xo,T(xo))é D(T(z),T(x,))
< c{,d(z,xo) + p{ialz,T(z)) + d(xo,T(xo))}
+ ¥ialz,T(x,)) + alx,,T(z))3
€ ocglz) + figlz) + g(x°)3 + riglz) + g(x, )3
and

(1 -B-pleglx y<loc+B+3)g(z).

g(xolv< f"-"_—'-(_;&:—g g(z) £ g(z),

contradicting the minimelity of g(z). If there exists a sub-

Thus

sequence {xnil of {x,} such that xnidf K, then z ¢ K. For

simplicity, we may assume that zn¢ K, n=1,2,se¢. By Lemma

4, for each n there exists a y,& 9K for which d(x ) »

n'Yn
+ dlyp,,2) = d(xn,z). Since K is compact and T(yn)c K, there

exists w,€ T(y,) such that d(x,,w,) = d( yT(yy))e We may al-

x
n
80 assume that 4y,% converges to some y, & OK. Let
8e = xd(yy,2z) + {d(y,,T(y,)) + alz,T(z))}
+ y4dly,,T(2)) + alz,M(y,))} - D(T(y,),T(2)),

then € > 0, because Yo% 2o For this € , there exists & po-
sitive integer N such that for any nZN
(5) d(yo,z) - d(yn,z)< 2e

(6) a(y,) - €< 8lyy)

(1) a(xpy2z)<glz) +2¢ , and

(8) n(rly,),r(2))<D(M(y,),T(2)) + 2e
Then for any nZ N, we have

g(yo) -€E< g(yn) = d(yn,T(yn))
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& alyp,wy) £dly ,x)) + dlxyW) = alxpy,¥n) * dlxy,T(y))

£ alxp,yp) * DIT(2),T(y,))4 dlxg,y) + p{T(2),1(y ) + 2¢

= dlxp,ypy) +oc dlyg,z) + BAA(y,, Ty )) * A(z,T(2))}

n'Yn
+ yidly,,1(2)) * d(z,T(yo)li - 6€
& dlxp,y,) + (o + 29 )d(y,,2) + (B +1gl3,) + (B+)glz)-
-6e < (1 +B3+7)g(z) » (B+3)gly) -2
hence

- €
8lyy) < H{.&L:-% glz) - W

Take a ue T(y,) such that a{y,,T(y)) = d(ygu). Since glz)>
>0, uky,. Thus we obtain
glu)s d(u,T(u)) £ D(T(y,) ,T(u))
< ad(yg,u) + pidly,,M(y,)) + dlu,M(u)}
+ yid(yy, () + alu,m(y))}

£ (ec#ﬂwr)g(yo) + (B +7)gl)

and
gw< FEELL g(y)).

Therefore it follows that

gluy< $x28220Q +B8%7) () _ (x2LB+P)e

(1 -p-9)7? (1-6-22
& g(zg) = {c+frr)e .
g NSt —(3-3-)2

This is a contradiction. Hence g(z) = 0 and since T(z) is

closed, we have z€ T(z). q.e.d.

In Banach spaces, the following corollary holds.
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Ccorollary 2. Let K be a nonempty compact subset of &
Banach space E and £ be a continuous generslized contractive

mapping of K into E. If £(dK)c K and

(oc+3+27)Q) +B3+2)
(1 -p-2?

point of £ in K.

£ 1, then there exists a (unique) fixed

Remark. If for any xe¢ K, T(x)c K in Theorem 1 (or Theo-
rem 2),then the conditions that k = ("‘(:@‘;’)(iz*ﬂ’ﬂ <1
-A-r

(or k4%1) and that X is metrically convex are unnecessary.
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