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ONCE MORE ON CONTINUITY OF MAXIMAL MONOTONE MAPPINGS
Marian FABIAN, Praha

AF_u-_m: In the paper there is given an alternate and
more elementary proof of the theorem due to Kenderov and Ro- .
bert, concerning continuity of monotone mappings.
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In the paper by Kenderov and Robert [3], the proof of the
following theorem is outlined.

Theorem. Let X be a real Banach space whose dual X* has
the property (H) (see § O), Let T: X—> Z'X"r be a maximal mo-
notone multivalued mapping such that int D(T)+ @.

Then the set of all those x ¢int D(T) for which Tx is a
singleton and T is (strongly) upper semicontinuous at x (i.e.,
to every € > O there is a J > 0 such that for all ue D(T),
fulfilling fu - x|l < o~, the set Tu is included in the e-
neighbourhood of Tx), is dense residual in int D(T).

The author [1l] has received the same conclusion provided
that X* is strictly convex and has the weaker property (HQ)
(see § 0). In this note, adapting the method of [1] and using

some idess of [3], we present an alternate and more elementary
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proof of Theorem. In doing so we do not ne2ed either the local
boundedness of T or any results of geometry of Banach spaces,
which seem to be used in [3]. Note that they are Lemmas 1.5,
1.6 and 2.2 which have been stimulated by [ 3].

Our method is based on the simple fact that a maximal mo-
notone multivalued mapping is demiclosed. Therefore, we first
study demiclosed mappings,which are far more general than ma-
ximal monotone ones. Combining the obtained results with spe-

cial properties of monotone mappings, we then get Theorem.

§ 0. Preliminery notations. In this note (unless other-

wise stated) P will mean a metric space, X a real normed line-
ar space and X* its topological dual endowed with the norm
dual to the norm on X. We shall say that X* has the property
(H) (resp. (H,,)) if for each net (resp. sequence) {w, } < X*
and each we X* the following implication holds

(wo—>wellw —lwl)=> w,—>w,

where the arrow "—> " means the weak* convergence in X* ,
Obviously, (H) ==(H,). If AcP, the symbols int 4, el A will

stand for the interior, resp. the closure of A,

Let T: P——-»?x* be an srbitrary multivalued mapping from
P to X* , The domain of T will be denoted by D(T). A single-
valued mapping Ty: P—>X* having the same domain as T, i.e.,
D(T) = D(T), and such that Tyc T (we do not distinguish bet-
ween a mapping and its graph) is called a selection of T. Now,
define the function fip: P—~—>(=00 ,+® ] by
fT(u) = inf{llwl| weTu}, ueP,

- 106 -



- *
the mapping T: P-—»ZX by

T=4(u,we |lwl= fplu) g ,
and the following sets (T, being a selection of T)

SV(TY = {ue D(T} | Tu is a singleton}
c(£p) ={ueD(T)| £, is continuous at u}
c(ry) = {fueD(T}| T, is continuous at uj

Cd(Tl) ={ued(T)| T, is demicontimuous at u},

where demicontinuity means continuity from the metric topolo-
gy to the weak* topology.

Finally, let F: Q—> 2F be a multivalued mapping from a
topological space Q to a metric space P (with the domain
D(F) = Q). We recall that F is said to be upper (resp. lower)
semicontinuous at ue Q if to each € > O there exists a neig-
hbourhood V of u such that for every ve V the set Fv (resp.
Fu) is contained in the & -neighbourhood of the set Fu (resp.
Fv). The sets of all the points ue D(P) at which F is upper
(resp. lower) semicontinuous will be denoted by GU(F) (resp.
CL(F))..

b 3
§ 1. Throughout the paragraph T: P—> 2%X  will denote @
dericlosed multivalued mapping, i.e.,

YueP VweX* ¥net{flu ,wglic T
(igy—> v, we—> w, 8up lw ll< +o0)==>(u,weT.
It can be easily seen that
D(T) = D(T) =4{ueP| folul<+ 3 .
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Lemme 1.1 ([1, Lemma 1.11): The function fy is lower
semicont inuous, i.e. for any real a the set {ueP| £nlu) £
éag is closed.

Lomma 1.2 ([1, Lemma 1.21): The set C(fy) is residual in
(1),

The following two lemmas are generalizations of Lemmas
1.3 and 1.4 in [1].

Lempsg 1,3: If To is an arbitrary selection of T, then
ctey) nsw(® e cr).

Proof: Let ue c(rT)n SV(T) and let {u, 3 DT) be a
sequence converging to u. Then f.r(un)-—-» t,r(u), i.e.,
“To“n ll——->l|T°u I« Hence the sequence % T,u,§ 1s bounded.
Let {Tour& 3 be an arbitrary subnet of {T.u,3} converging

weakly* to some weX*® . Then, by the demiclosedness of T,

weTu, and lw I &UTul  on the other hand, the wesk® le-
wer semicontinuity (w*,.,l.s.c. in abbreviation) of the norm

on X* gives leélimﬁinr fTqu, | = T ul . Thus
o

fwl= NTul, weTu, And since ueSV(T), w = T u. So we ha-

ve shown that {To“nj converges weakly* to T u. But
-(Toun‘} was an arbitrary subnet of {Toun'i . Therefore
T,u,— T,u, too. It means ue cd('ro).

Lemma 1.4: Suppose that X* has the property (H.,). Then

for any selection To of T the following inclusion holds
clep)NSV(T) c (T ).

Proof: It follows immediately from Lemma 1l.3.

- 108 -




Legmg 1,5: If X* has the property (H), then, for each
ue C(£p), Tu 1s a compact set, and C(fy)c Gy(T).

Proof: Let ue C(fp). Let {w,3 be a net in Tu. Then
I wd‘ll = fplu), hence {wy} is weakly* praecompact and,

from {w“} s, we can extract a subnet {wﬁi converging weak-
1y* to some weX* . The w*.l.8.c. of the norm on X* gives

lwls limﬂ inf ltwp = fp(u). But thanks to the demiclosed-
ness of T, we Tu, thus lwl 2 fy(u). Therefore |l wil = £5{u)
and we-fu, which proves the compactness of Tu.

Next we shall prove the upper semicontinuity of T at ue
€ C(fT). Suppose the contrary. Then there is an € > 0 and

a sequence 4(u ,w )3 c T such that u,— u but
(%) lw,-Tal=4dnf flw -zl |z2eTu} ze>0, n=1,2,...

Since ue C(£gp), § w ll = fp(u,) converge to £p(u), so the sequen-
ce -iwn} is bounded, i.e., weakly*® praecompact.v' Therefore,

there is a subnet -iwn“‘}c{ w,} and weX™ so that wn — W

The demiclosedness of T gives we Tu and since

Il wi &11m  inf lwy, | = £p(u), w belongs to Tu. Thus we have
<

W, —> wand lw, |—>| wll. Now, the property (H) yields
< L4

v, —> weTu, which contradicts (X% ). So the upper semicon=-
«©

timuity of T at u is proved, i.e., ue CU(’?), and hence C(fp)c

< CylT).

Proposition 1,1 ({21): Let F: @—»2% be a multivalued
mapping from a topological space Q to a metric space P (with
D(F) = Q) such that Cy(F) = Q and that ror each ueQ the set
Fu is compact. Then the set CL(F) is residual in Q.
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Taking Q = C(£y), P = X* and F =”1“/c(fT) (restriction

of T on the set C(£p)), we see, by Lemma 1.5, that the hypo-
theses of Proposition l.1 are fulfilled. Hence

Lemmg 1,6: If X* has the property (H), then the set
o (T/ olgy) 1o wesidual in Clep).

%
§ 2. Recall that a mapping T: X—> 2X  ig said to be
monotone if
¥(x,x*)eT ¥(y,y*)eT (x*=-y* x -y>z0,

where (.,.? denotes the duality pairing between X* and X,
and maximal monotone if there is no proper monotone extension

X¥

of T. In what follows we shall assume that T: X—> 2 is a

maximal monotone multivalued mapping such that int D(T)+ &,
Lopmp 2,1 (seell, Lemma 2.1)): T is demiclosed.

’ *
Lemma 2,2: Let T : X— 2X" be a monotone multivalued
mapping such that int (el D(T’))s @. Then
¢ (T )N int (el D(T"))esv(T’),

Proof: Let x& G (T')Nint (el D(T')). Suppose there are
two different elements Wy, Wy in T°x. Choose y&€ X so that

Va<lyll<l, Cw = wp¥>2 3 lw - wll>0

and take a& positive g < % “"1 = wyll . Since T’ is lower se~

micont inuous at x, there is a ¢"> O such that

(ue (1), Ix ~ull<e M=T"xcUg (T'W),
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where Ug (M) means the € -neighbourhood of M. o can be as-
sumed so small that llx -~ u ¥ = o implies uecl D(T"), Then
x + dyecl D(T') and there exists u, € D(T°) sueh that

lx+ Iy -u,l <d(1 - I yll). Hence

Ix =u,l&ll x » Sy - u ll+ Idyll <,
from which we get T'xchJ (T 'uo). Therefore, we can find zos
€ Tu, such that
Iw, -z ll<2e < ‘} lwy = wll .
Now, from the monotonicity of T , we have
06<z, = w,u, = x> =(z; = Wwy,u, - x)+
+{wy = wp,u, - (x + Iy)? *<w, - wl,d'y Y&
glw, =z L Nuy - xl+liw, - wlll-lluo ~(x+ Iyl +
+ Iwy =W,y <
and using the previous inequalities
<lw = wl (/4 + 1 - Uyl) - /2)<0,
which is impossible. T'x is thus a singleton, i.e., x& SV(T’).

Propogition 2.1: Let X be a real Banach space whose du-
al X* has the property (H). Then the set SV(T)N int D(T) is
dense residual in int D(T),

Proof: Denote T’ = T/c(fT). Thanks to Lemma 1.2, the

set c(fT) is residual in D(T). Hence, by Baire s category
theorem, int D(T)= cl C(£p), Thus

int (el D(T")) = int (el C(£y))> int D(T)
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and, according to Lemma 2.2,

C(T)N int D(T)c SV(T )N int D(T).

But Cy(T’) 4s residual in D(T) since C/(T’) is residual in

c(£p) (Lemma 1.6) and C(fp) is residuel in D(T) (lemma 1.2).
Therefore the 1last inclusion implies that the set SV(T’) n
Nint D(T) is residual in int D(T). Now, Baire s theorem and
the obvious inclusion SV(T’) c SV(T) complete the proof.

. %
Lemmg 2,3 ([1,Lemma 2.,2)): Let T : X—> 2¥" ve a mono-
tone multivalued mapping with int D(T )4 6 and let Ti be an

arbitrary selection of T’. Then

A(r))N 1nt D(T) e SV(TO).

Propogition 2.2: Let X be a real Banach space whose du-
al X* has the property (H). Then the set SV(T)N int D(T) is
dense residual in int D(T),

Proof: It follows from Proposition 2.1 and Lemma 1.2 that
the set SV(T)N C(£5)N int D(T) is residual in int D(T), and,
by Lemma 1.3, so is Cd(To)ﬂ:lnt D(T), where T  denotes a sele-
ction of T. Now, Lemma 2.3 and Baire s theorem yield the con=

clusion of the proposition.

It should be noted that Proposition 2.2 follows immedia-
tely from Proposition 2,1 if we use the fact (see [31) that,
for each x € C(£q), Tx = Tx.

Proposition 2,3: Let X be a real Banach space whose du=-
al X* has the property (H) and let T, be an srbitrary selec-
tion of T. Then the set C(T,) N int D(T) is dense residual in
int D(T).
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Proof: Combining Lemmas 1.4, 1.2, Proposition 2.1 and

Baire’s theorem.

Lemma 2.4 ([1, Lemma 2.31): If T;, T, are two arbitrary
’ *
selections of @ monotone multivalued mapping T : X—> Zx ’

with int D(T )@, then

C(Ti)nint DT’) = c(Ty)N int DT’).

Theorem 2,1 (Kenderov, Robert [3]): Let X be a real Ba-
nach space whose dual X* has the property (H) (where nets
are taken), Let T: X— 2X™ be a maximal monotone multivalu-
ed mapping such that int D(T)4 @. Then the set of all those
xeint D(T) for which Tx is a singleton and T is upper semi-
continuous at x (i.e., the set Cy(T)N SV(T)N int D(T)), is
dense residual in int D(T),

Proof: It follows from Proposition 2.3 and Lemmas 2.3
end 2.4 in the same way as in the proof of [1l, Theorem 2.3].

It should be noted that the set from the above theorem
is G4, and that the remarks similar to those in [1l1] hold.
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