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ITERATED ULTRAPOWER AND PRIKRY “S FORCING

Lev BUKOVSKY, KoBice X’

Abstract: It 13 shown that the factorization of the

Boolean ultrapower \/ by ,a suitable ultrafilt er U is
isomorphic to the Gaifman’s direct limit of the iterated
ultrapowers Jf me ., where B is the Boolean algebra of

the Prikry’s forcing. Moreover, the corresponding extension
Vv (B)/TL is isomorphic to the intersection meq an.

Key words: Iterated ultrapower, generic extension,
forcing, measurable cardinal.
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In the note [1) I have shown that the intersection N =

= /M N, of n-th ultrapowers N of the universe V is
m ¢ Wo n

a generic extension of the Gaifman’s direct limit ‘Mﬁ’o of
N, € @, (with corresponding elementary embeddings). Mo-
reover, this generic extension possesses properties similar
to those of the extension constructed by K. Prikry [4]). P.
Dehornoy (2] has proved that actually N' is the generic ex-
tension of x‘"o by Prikry’s forcing (constructed inside

the model )Q.;o‘). In this note I will prove the same result

x) The result of this note has been presented on the Logic
Colloquium, Clermont-Ferrand 1975.
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by a method different from that of P. Dehornoy and obtaim
some additiomal information. Namely, I will prove the follo-
wing theorem:

Let K be a measurable cardinal, % being a normal
measure on K . Let B denote the complete Boolean algebra
constructed from the Prikry’s forcing. Let 4 be the ultra-
filter on B constructed from U by (3). Then

i) the ultrapower E\/ /% is isomorphic to the mo-
del class .)/'wo )

ii) the factorization V(B)/’-D'L_ of the Boole an-valued
model VY (B) is isomorphic to the intersection mQ’a Jv"n
and

iii) MQO Ny = ff'wofa], where the set a is a
generic subset of the Prikry’s forcing.

Terminology and notations are those of [1] and [31. How-
wever we remind some of them here.

If C is a comple te Boolean algebra, Cv will denote
the class of all functions f such that the domaim XD (f) of
f is a partition of C (i.e. elements of D (f) are pairwise
disjoint and the union of D (f) is 1). For any formula ¢
of the language of the set theory, one can define the Boole-
an value

[ @ (£150eert) | geC
Frreserfpe Cv , in the obvious way, e.g.

Ifef, lg=Vixec; (3u)3v)(xeubxevikf(ue £,(v))3.

If 7 1is an ultrafilter on C, we obtain the Boolean ultra-
power CV /Y  defining the membershiprelation €, as

- 78 -



follows:

f e,v.g'.—"-.l feglge v.
The famous &oS~-theorem says that

(1) CV/zrl:-—: @ (£1yeeeyfp) =l (7,000,801 g€ U

The Boolean-valued model V(C) and the Boolean value
l o (£f19.0.,£ )0l € C are defined e.g. in [3]. If the ul-
trafilter ¥ is 6 -additive, then one can define the in-

terpretation i, of V() a5 in [3], p. 58, by induction

ig (£) =4i, (g); IlgefIICeV¥.

let xeV . We set

DE) = $£13, £ = x.

Then ?:ecV . The function X € V(c) is defined in (3], p.

53,
If ¥ is &' -additive, then CV /v  is well-founded

and there exists an isomorphism Yy of CV /7% onto a

transitive c}éss. One can easily define an embedding X of

Cv into {V(C) such that

X %) =X
for any x € V . It is easy to see that for arxy fe Cv s
the following holds true:
(2) iy ( X(£) = gy ().
Let K be a measurable cardinal, % being a normal me-

asure on ¥ . U, denotes the ultrafilter Ux...xU on

k . The set P of Prikry’s conditiors is defined as follows
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(n = 0 is allowed!):
peP=p = ety X D500 <is < xp<inf X, X e U,

P ‘w
Pep'Em2zm’) af=atf o, =00t X'e X" o € X7
for n"< isn’.

Let B denote the complete Boolean algebra containing P, <

@s @ dense subset, We define 7% < B by the conditiom

(3) AelU= (AXesKk)XeUk <F ,Xp&A).

K. Prikry [ 5] has proved that U iss 1 ~-comple te ultra-
filter on B.

et K (®) denote the set { CEroeey §m 25 §y<eee<fperc .
Evidently K.(ﬂ)c Up «For {§qyeee, §m Ve ™ , we set

P§peisfn = << Epaeees ?m. >ie = (Ep+ 12 .

(n) 3 is a parti-

The set {p¢ ¢ 3 CEgreees §m 2 € 10
tion of the Boolean algebra B. By a simple computation one
can prove for each X s ©®) that

(4) \V Xel,.

° =
PII TR Y €

The set

B! = 4 (?}C",sﬂ)‘x P?d"“’?w ) X e K{“’?

is @ complete subalgebra of the Boolean algebra B. Evident-

i th
ly ByS By Moreover, B/ is atomic with the set

4 Pioafm CGreees §m 2 € w(rn)} of atome,

since 1™ ¢ %,, the mapping @, defined for f ¢ ~yv

as
G CEV (e, §0 20 = £ (P g,y €
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induces an isomorphism - denoted by the same letter @, -
B - n

of ™W/U onto X v/, -

The inclusion an Bﬁn’ n<m induces the natural embed-
ding Bm _ B” _

V/a € "V/U .
w 3

Let j, o denote the natural embedding of V/¢,  into

n
KM\- H
V/um . The transitive class an is equal to

“'ﬂr
qru“ C VU, ) and vn’m is the corresponding embedd-

ing of W', into Ko

Since B,E£B, we can write

Bp. . .- B _
V/L ¢ V/U .

We show that in fact
B, , =~ By, =
(5) V/U = U vV/U .

me w,

Let £€BVv . We can assume that 2 (f)eP, i.e. that £ is
defined on the elements of P. Let

P, = i<<§pu, § 2 X> eP;m=m i .
Then D(f) = \J (D(£)nP,) and also
1= V2 (@) = VV(D(£)AR.
m

Since U is € -additive, there exists a natural number n
such that
VD(E)nP) « U .

If p,qe Py, A D (f), pkq then paq = O. Thus, if
Pp=<LLfty §m?2, X2, q =KL ey M2, YD, then
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{Garees SO F My M ? (since otherwise
((gq,...,ﬁ,,‘), XN0Y)% Aq ), We define T € By s

follows:
Bpg  gm ) =T, §n 7, XD ) it
<<$4,...,?,,,),X>e D(£) A By for some X,

= 0 otherwise.
B
Evidently £ e ™V and

le=FlgzVE,ndENeZ .

From the definition of the direct limit of the system
V/%p, §mm end from (5) we obtain a natural isomorphism
i . K
Pw, from V/U  onto m = V/U, .
X . . . K™
If Y, is the isomorphism of lim ViU, onto the tran-
sitive class wao , then gawo ° 'l,u‘,,o is an isomorphism
B —
from vV/u onto wao .
R R [(:V .
Since the interpretation iz of the model YV /U maps
the submodel B\/ /0 (more precisely, the submodel

X( V)/ W onto a transitive class, one can easily see that

(6) Xoé,q-z = Ca, ° Yo, >

i.e., for reBy \we have
1,&( (£))="Vw (@w (£N e )Q, .
let h € V(B) pe such that

v
Iny = §0= ¢ Megn g Ponbnan®
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By an easy computation we obtain
(M Lﬁ<h)={<m,mm>;mew°§
A
where k, = ¥, (k) is the measurable cardinal imn N .
m n
By K. Prikry [4], the generic extension V(B)/E of

By, /% (more precisely, of X BV W% ) is such that

.

vz =Bv/Z [n1. Thus, by (6) and (7) we obtain
), —
(8) 52 (VIR = Xy Likm k> me @, 31,
In [1], we have proved, denoting {<m,x, D>y m € e, by
a, that
X

m

2 Sy, Lal

for every n e <, . Now, we shall show that also

Using the theorem of R. Balcar and P. Vopénka, [31, p.
38, it suffices to show that each x € Q Np, XEO0nis an
element of the class N, [al.
o
We set
x, = '{gi’)m,wo(g) eX ¥ .
Then
Ym0, (Xn) € X.
B Co. ¢
Let £, € ™V  be such that ¥y (pm (£,0) = Xp .
B, .
One can easily construct functions g, € "™V, n e, in

such a way that fl = g, and
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lg‘g‘m-‘! IBM,, = l§eqm Icym. viges, ‘B,M., .

By simple computation we have
Vm(?m(g’»)) = Xy
Now, we define f e V(B) as follows:
A A
2§ =V I§e q,,wlsns B .

Then

i=(f) = x,

u
thus, by (8),
xe€ )/;,o lal .

Let us remark that the model \/(B)/ A is well-foun-
ded, but % is not generic ultrafilter. In fact, the exis-
tence of such a non-trivial well-founded (Boolean) model

implies the existence of a measurable cardinal.
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