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FINITE KILLING VECTOR FIELDS

Alois SVEC, Olomouc

Abstract: We produce a new integral formula for tan-
gent Vector fields on a Riemannian manifold. By eans of
it, we prove a vanishing theorem for finite Killing vector
fields, which are the finite analog of classical Killing
vector fields.
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Let (M,dsz) be an orientable Riemannian manifold,
dim M = n; let ©OM denote the boundary of M. On a suitable
domain UcM, choose the l-forms > (i,j,ees = 1,...,n)
such that
2 _ i J
(1) as® = 9, @ @
Then there are l-forms wg determined by the conditions

(2) dw?t = WIA co?, a)g + 0l

370

the curvature temsor is given by

J = ok J_A4 gl kK, & pi J =
(3)  dwf=wjAwp -7 Riyp @407, Riyp +R{p~0,

the Ricci tensor by
(4) Ryj = RE

ijk*
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Further, let (vl,...,vn) be orthonormal frames in U dual

to (wl,..., @™). The Buclidean connection of M is then gi-
ven by the equations

(5) Vn= wivi, Vv = wivj.

On M, be given a tangent vector field v; in U, let us
write

(6) i

v=xvi-

The covariant derivatives of xfL with respect to the cofra-
mes (@) be defined by

7 axt + xJ wi.=xi,-a>5.
J 5d
Then
1
(8) (dxj):J - xi_i_\w]; + x':dcoi)/\w'j = - -2— x'jR:;kz wk/\ wl’

and we get the existence of the second order covariant order
covariant derivatives x- ik such that
(9) th:i--xlk wk 4 X + = xt x
3 d H
i i o 2pl
(10) x;.ik Xk x lej.

On U, consider the l-forms

' k_J i J.k i,
(11) ¢, = aijx Ty @ Y a"'ijx Xk W™y
it is easy to see that both &, and Yo are globally defi-

ned over all of M, The usual x ~operator be defined by

(12) xwl = 3 wlaioa 0¥IA 0 A LA WD,
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i.e,. wl/\ *wl = ﬁ)l/\.../\ 6)“—'-: dv.
Then

J,
(xlax +xx )dv,

"

(13) ax ¢,

= i. J + i J
ax ¢, (x}lx"] X x’j.)dv
and, using (10),

(14) dx(gq - @5) = (X - Rijxix‘j}dv,

X:= 1:1‘13:‘j L= xtxd =2 =, (x x‘)
?

J i
3d 93 <3 ;J x:-x e

1753

Our starting point is then the obvious integral formula:
- = - id
(15) gM*( P - Po) J;A (x Rijx xY)dv.

To the vector field v, associate the quadratic diffe-
rential form
(16) Q = (V(m+w), V(n+ v))

s . . s x 2

on M, The vector field v is said to be a finite Killing

vector field if Q, = as?, i.e.,

i i3 J =
7) Sij(a;-ﬂ-x;k)(a +x’2) = dyp
or, equivalently, | Gg + x‘.ji I is an orthogonal matrix.
)

Theorem. ILet (M,dsz) be an orientable Riemannian ma-
nifold and v a finite Killing vector field on M, iuppose:

i j .
(i) the Ricci curvature form Rj; § ?J of (M,as®) is
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negative definite on M; (ii) v =0on OM, Thenv =0
on M,

Proof. Allwe have to prove is to establish the ine-
quality XZ0 on M and to apply the integral formula (15).
Let me M be a fixed péint. The matrix ucfg + X?i" being

orthogonal, there are orthonormal frames at m such that

our matrix takes the canonical Jordan form, i.e.,

2i-1 _ - _ 2i s
(18) x 23 = cos w; -1, x25-1 = - sin ey,
2i-1 _ _. 2i  _ - . - .
1:32i = 8in oo, x}21 =cos ey -~ 1fori=1,...,P;
xl, = -2 fori=2P+1,...,2P + R
’
xJi = 0 otherwise.

~e

Then

(19) X =2(1 + 2R) 4;92“(1 - cos ety ) +

)(1 - cos & ) + 2R(R - 1)2 0,

+ 4 45;»%:6.‘.}’(1 - cos g

and we are done,
Remark, To v, associate the quadratic differential form
(20) Q2 =4VmVim+v)Y ={d%. N
] ’ 1J 2 ik ™33

k i ,J
+ O"ij i)} W w

' )
on M. The conditionm Q‘; = 82 characterizes the Killing vec-

tor fields because it is equivalent to

k
(21) % + d']'cjx

k =
lkx ’,J i 0.

.
)
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Using the same integral formula (15), we are in the posi-

tion to prove the validity of our Theorem even for Killing
vector fields(this result being, of course, classical). In-
deed, we have just to prove that X is non-negative, Multi-

plying (21) by d'lj we get x> . = O. Further, (21) imp-
b

i
lies xl_j + ok éjxp’k = 0, and we get
’
= Jik o £ d - . Jsk »
(22) X zax;k x;1 xJ;kx Z0

using the usual notation.
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