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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

18,1 (1977) 

A NOTE ON THE EXISTENCE OP MORE THAN ONE SOLUTION FOR 

ASYMPTOTICALLY LINEAR EQUATIONS 

E. PODQ1AK, Princeton 

Abstract: Consider the nonlinear operator equation 
In + tUu) == f with nonlinearity satisfying PQN(x0)—»» 0 as 
li x (I — * co for x in Ker Lf P being the projection on­

to Coker L. Under additional hypotheses we show that this 
equation has the property that for II P f l| sufficiently 

small, it has at least two solutions. 

Key words: Predholm, semilinear alternative problems, 
degree, Leray-Schauder degree, homotopy. 

AMS: 47H15 Ref. 2.: 7.978.5 

Introduction. Consider the nonlinear operator equation 

(A) Lu + N(u) = f 

where L i s a linear Fredholm map of index zero between Banach 

spaces X and T and N i s a compact uniformly bounded map of X 

into Y. Using the notation XQ = Ker L, P » projection onto 

Coker L, we decompose each x in X into x + x-̂  where X+X ® 

© X, and X, i s some complement of X in X. We assume 

(H.l) Given e >• 0 and k £ 0 there exists ps»0 such that 

i f U x - J U k a n d l l x 0 l | * f f B PQN(x0 + xx) II < c . 

In addition, suppose Ker L i s one-dimensional and 
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(H.2) For any M, there exists a lumber RQ such that if 

|| x1 II £ M and || xQ l\ > \ PQN(x0 + xx) and PQN(-x0 + x-,) 

are of opposite signs. 

Then the followin result is known: 

Theorem. Assuming (H.l) and (H.2), the equation (A) has 

a solution for each f in the range of L. Furthermore there is 

a number c depending on P,f, where P-, = I - P is the projec­

tion onto the range of L, such that for II PQf || -£ c(P-Lf) (A) 

has a solution. 

Examples of boundary-value problems where essentially 

this abstract result is used can be found in references [13, 

121, and L 31 . 

The generalization of this theorem to the case where 

dim Ker L > 1 i s e a s i l y seen . Let 4.x •} • _-, „ be a f i x e d 
oi X—JL ,... ,n 

basis of unit vectors spanning Ker L and let an arbitrary e-

lement of Ker L be denoted by a» x where a = (a-,,...,a ) 

x = (x,, •.. .x,^) and a • x^ = a,x , + ...+ a^x^. Instead of o ol* ' on o 1 ol n on 

(H.2) assume 

(H.3) For any M there e x i s t s a^number R such that 

H x1l|£V M and la 1 2 RQ imply PQN(a • xQ + x - ^ 0 

and l e t t i n g 4» (a) = P N(a« x ) be regarded as a map of R*1 

in to R11, assume for R2:R0 

(H.4) deg (4>,0,Dg)4:0 where Dg i s the b a l l of rad ius 

R in Rn and deg i s the standard Brouwer degree . 

Clearly for the case of a one-dimensional kernel , (H.3) and 

(H.4) are equivalent to (H.2) . The re su l t now reads as f o l ­

lows : 
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Theorem. Let L and N be as above with N satisfying 

(H.l), (H.3), and (H.4). Then for each ff there is a number 

c(P1f) such that for II P f l| «< c(P-Lf) f (A) has a solution. 

A variant of this result has been proved and used by 

Mawhin in the study of periodic solutions of ordinary vec­

tor differential equations. (See 143 and L53). 

In this note we extend the results mentioned above by * 

showing that for II P f II sufficiently small and + 0, (A) 

has in fact at least two solutions. 

Section 1. Here we formally state and prove our main 

result. 

Theorem 1. Suppose N satisfies (H.l),(H.3),and (H.4). 

Then for each f, there exists a number c(P . jf) such that for 

0 < II P f |<c(P-.f), equation (A) has at least two solutions. 

Here c(P-.f) is the same constant needed in the previously 

mentioned work. 

To prove Theorem 1, using the standard method for semi-

linear alternative problems, we rewrite (A) as 

(1) F ( x 1 , a ) = 0 

where F: X^x R11—>• X-̂ x if1 i s g iven by 

(2) P ( x l f a ) = (xx + L " ^ t N ( a - xQ + x-,) - f 3 t 

P N(a« xrt + x - ) - P f ) o o 1 o 

Here P-. is the projection onto L(X-.) and L: X..—> L(X,) has 

an inverse which we have denoted as L~ . 

Let Dk =- i (x-pa): H x^ II + I a I & k J and let S^ be its boun­

dary. Then we have 
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.Lemma 1. There exist constants c and k such that i f 

II PQf | l < c , degL S (F,(0 ,0) ,Dk )40, where deg-̂ g i s the Leray-

Schauder degree. Furthermore these constants depend on P-.f. 

Proof. Let 

(3) H(x l fa,t) * (X;L + t L ' ^ E N C a - xQ + x-^- f J , 

PJ*(a. x* • tx , ) - Pnf) 
O O x O 

We claim that there exist constants, c, k such that i f 

II P f II < c, H(x l fa ft)fsO on S. . This i s easily seen since 

i f the f i r s t component of H i s zero, by (3) , 

(4) 11 x x II 6 II i T 2 ! ^ II C sup llN(x) II + II P-f II J s M 
Jt 4 J\ 

and thus by hypothesis, there exists RQ such that 

P0N(a* xQ + xx)*0 for II x± II £ M and I a I £ RQ so that on 

the bounded set i (xx,a); II xx II £ M, RQ £ I a I £ RQ + U J 

there is some constant oc > 0 such that II PQN(a* x0 + 

+ x-j) If > eC . Thus picking c « cc , if II PQf H < c and 

k • M + R we have H(xlfa,t)4: 0. This gives us that 

H(xlfa,0) is homotopic to H(xlfa,l) on S^. But H(xlfa,l) « 

* F(xlfa) and 

(5) H(xlfa,0) « (xlfP0NU. xQ) - PQf) 

so that 

degl;S(F,(0,0),Dk) • deg (P0N(a. xQ) - P/,0,1^) 

» deg (<^,0,D2)4-0 by hypothesis (H.4). 

It is easily seen from (4) and the subsequent inequalities 

that c and k depend on P-,f. 

Lemma 2. If PQf 4* 0, there is a k-.̂  depending on PQf 
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such that degLg(Ff(0,0),!^ ) = 0# 

Proof. Let k-, = M + ̂> where iH is given by equa­

tion (4) and tf> is given by hypothesis (H.l) with e = 

= !P0fll . 

Thus on S. 
Kl 

G(xlfa,t) = Ox., + t L " ^ CN(a* xQ + at-,) - f 3, 

t p
r t <

a # x
rt +

 xi> ~ prt
f> O O 1 o 

is a non-vanishing homotopy between r(x-j,a) and G(xlfafO) = 

= (xlf -PQf). But clearly 

degISCGf(0,0)f.Dk ) = 0 

since G is not surjective. Thus degje(Ff(OfO)fD, ) = 0# 

Finally we have 

Proof of Theorem 1. Given ff suppose IlP0f|l<: cf whe­

re c is given in Lemma 1. Then there exists k such that 

deg.£g(Ff (0,0) ,.0^)4*0. But by Lemma 2f there is a k^ such 

that degj^CF,(0,0) fDk ) = 0. Therefore there must be a zero 

of F between Ŝ . and Sfc . Thus we conclude that for llPQf II*-

<c, P must have at least two zeros. 

Remark. Note that if PQf = 0f the proof of Lemma 2 

breaks down, and in fact Prof. FuSik has pointed out to me 

that the boundary-value problem with f = 0 

-u" - u + u(l + u 2 ) " 1 = 0 

u(0) = u(w ) = 0 
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satisfying (H.l) and (H.2), i s uniquely solvable. 

I would l ike to express my thanks to Prof. Fu&ik for 

the current formulation oftypothesis ( H . l ) . 
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