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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,4 (1976)

QUASI-ENTROPY OF FINITE WEIGHTED METRIC SPACES
Miroslav KATETOV, Praha

Abstract: The note contains a proof of the possi-
bility to extend the notion of the entropy (in the clas-
sical sense) to finite sets endowed, besides a probabi-
lity distribution, with a semimetric.

Key words: Quas'i-entropy, semimetric, projective
subentropy.

AMS: 94415 Ref. Z.: 8,721

In various questions it is useful to possess a fumc-
tion which is defined for an appropriate class of proba-
bility distributions on semimetric spaces and has some ba-
sic properties of the entropy in the classical sense, In
this note, a construction (in a broad sense of ﬁhe word)
of a function of this kind for finite spaces is given.
Possibly, the method, particularly suitable generaliza-
tion of c.d.e.(see 3.2), may also work in a more general
situation.

It seems that some concepts introduced below, though
rather natural and virtually kmown, have not been examin~
ed in the setting presented here., Hence, definitions are
given starting from the most elementary ones. On the ot~

her hand, details of proofs are omitted.
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Concerning the entropy, we presuppose the elementa-
ry facts only; of the semimetric spaces as good as nothing

is assumed., Therefore, no references are given,

l.1. Besides a few deviations, we use the standard
terminology and notation. Parentheses are omitted whenever
possible: e.g. £x stands for f£(x). Symbols like -(xa: acA}
stand for sets, (x,: a€ A) for indexed sets. The following
letters, possibly with subscripts, etc., designate objects
of a specified kind: D,K,Q,T stand for finite non-void sets,
P,S for spaces (see 1.3), @ , 6 for semimetrics (1.2), «,
» for weights (1.2). The cardinality of T is denoted by
IT! ,A function is a mapping into R (the real line). If x is
a segment of a string y, we write x-<¢ y. Conventions: log

means 1og,; 0/0 = 0; 0 1og O = O,

l.2. By definition, a semimetric on T is a function
@ on TxTR such that @ (x,y) =0, @ (x,y) = ® (y,x)Z0,
& weight function (or simply & weight) w on T is a measu-
re on T. (Observe that (x,y) may be interpreted e.g. as
difficulty or as importance of distinguishing X, ¥, or el-
se as the "cost" of finding out, given t e {x,¥§ , whet-
her t = x or t = y.) Symbols such as @ + & , &« = » have
the usual meaning. If @ (x,y) = 1 whenever x#*y, then @
is denoted by 1.

1.3. Let @ and « be, respectively, & semimetric
and a weight on Q. Then P = € Q,Q@, x> will be called a
° finite weighted semimetric space or a FWM-space or simply

& space., A space (Q,@ ,0? will be denoted by O. We put
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WP = wQ, dP = max @ (x,y), £P =1log |iqeQ: wuq >
>03| if w >0, £0 =0. If BcQ, then up designates
the weight function (aB(X) = @(XnB) and Py or PI'B
stands for {Q,QP, Mp? .

l.4. Notation., WM(T) is the set of all spaces
¢ T,So s 2> endowed with the following topology:
(T, Py > > <T@, @2 iff @px,y)— @ (x,5),
i (x) — v (x) for all x,ye T; (WM) is the class of all
FWM-spaces; ~~s is the least equivalence relation on (WM)
such that <Q,@, m>~<T,6, ») if, for some £f: q—> T,
Vt = (u,(f-lt), 6 (£q,fq") = ;D(q,q') for all q,q’e Q,
teT; Lx = -x log x for xéd; if ¢ = (x}) is finite, then
Hf  is the entropy, = - KZ x), of § i Vix,y) =
= H(x,y)/xy for x>0, y>0.

1.5. Let P = <Q, @, y? , keK, be spaces. We put
€ (P1,Py) = = (93. @3 -0 (q,0"): q,a’e Q), @ (Py,B,) =
= ® (P,Pp)/ Q@ Qe If () & &,, we write P;£P,, If
a € R for k€K, we put = (g P : kek) = {Q,0,Zg ¢ 7
provided i a @, (q)Z0 for all qeQ, IfP = = (P : xeK),
we call (Pk) a decomposition of P; [Py1 will designate the
space {K,6 ,» > where 6 (k,k’) = P PPy, )y, »(k) =
= UyQe - We put T (Py,P,) = H(wPy,wP,} @ (P1,P5).

1l.6. Definition. A non-negative function ¢ on (WM)
wiil be called (I) & subentropy i;t (1) ¢ (Qap ,bu’ =
=ab < Q,p, > if aZ0, bZ0, (2) 9P = @B, if
P)VPy, (3) @< Q@,%>Z ¢<Q,6,u) whenever 026,
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(4) it P ={4a,b},0,4”, then gP£H(w) @ (a,b);
(I1) continuous if (5) @ is continuous on every WM(T);
(III) a quasi-entropy if (1) - (5) hold and (6)

@< Q,1, 4> =H(w); (IV) projective if, for any de-
composition (P.) of a space P, 9P% Sq Pp+ 9LP .

1,7. Clearly, there exist projective subentropies,
and the l.u.b. of all subentropies is a subentropy. We are
going to prove

Theorem. The leaQt upper bound of all proJjective sub-

entropies is a projective quasi-entropy.

2, We shall need some well-known and/or easily proved
faets concerning the entropy H.

2.1 H(xm) + H(y )£ Hix + Fy)e

2.2. If x;2 y;>0, then V(xy,X;)£V(yy,¥5).

2.3, If bZa>0, then H(1,a)/H(1,b)Z1 - log ba"1/10g b.

Proof. By the mean value theorem, H(1,a)/H)1,b) =

= f(a + x)/2(b + x), where f(u) = log u + log e, O£x=£1.,
Hence H(1,a)/H(1,b)Z1 - log (b + x)(a + x)_l/log (b + x).

3. We are going to define a function on (WM) which
turns out to be (i) a projective quasi-entropy, (ii) the
l.u.b. of all projective subentropies.

3.1. We dencte by A the coflection of all
Dcl(£0,13%: n<w ) such that (i) xeD if x= ye D, (ii)
x0e D iff x1eD. If D e A , we put D’ ={fxeD: x0€D 3,
D" =D - D, D(X) =fyeD: yE x for some xe X3 where Xc D,
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3.2, Definition. A family P = ( Pyt xe D) will be
called a dyadic expansion (d.e.) of Pif (1) Ded ,
(2) P, £P, (3) P, = P+ P, if xeD’, (4) By = P. We
put ['(x) = I'(P,x) = T (Pr0Pyy)y TP = S (T(x):

: xe D’), If, in addition, (5) £LPy = 0 if xe D’ , then
& will be called a complete dyadic expansion (c.d.e.)

of P. For every Pwe put cP = inf {7 P : P is a c.d.e.
OfP}o

3.3. lemma. If ® = (P,: x€D) is a d.e. of P, then
cPe TP + = (eP : xe D" ),
Proof. let € = O, Choose ¢€(x)>0, xeD” , such
that = e (x)< ¢ . For each x&D” choose a c.d.e.
&, = (B 4% Ve D,) such that T'P_£cP_+ e(x). Put
D*=D"u U(x.D.: xeD"). If z&D’, put P} = P,; if xe
* - #- I' -
€ D", y& Dy, put P} o =Py o Then P*¥= (p,: zeD¥) is
c.d.e. of P, cP£ "P¥= = (T(P,x): xeD’) + S (MP,:
:xed”) £ PP + = P+ Z g (x).

3.4, If (P(t): teT) is a decomposition of P, S =
=[P(t): teT1, then cP£cS + = cP(t).

Proof. Let € > O. Choose a c.d.e. & = (S;: xeD)
of s = <T7,8,») such that T¥ £ eS+e . Put S =
= (17,8 ,» > , P = = (e (x,t)P(t): te T) where
w (x,t) = P (t)/»(t). Clearly, P = (P,) is a d.e. of
P. It is easy to see that T'® =T¢¥ ., Since L8, =0
for xeD” , there are t,€T, xeD" , such that w,(t) =
=0if t#t . Since P, = (x,tx)p(t), we have E(crx;
1ty =t) = cP(t). By 3.3, CP &4T'¥ + = (cP : xeD") =
= I'¥ + = (cP(t): teT).
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3.5. The function ¢ is a projective subentropy.
Proof, Consider conditions (1) - (4) from 1.6,1.
Clearly, (1),(3),(4) are satisfied, (2) and the projecti-

vity follow easily from 3.4.

3.6, If P, = {Q,1, ;> , then T (P),P,) 2
ZH(@my + ‘“’2) ~-Hyy - Hu,.
Proof. Put [P),P,1= (£1,2%,6,»1 . Clearly,
§(1,2) =1 - & (9. 4q: Q& Q)/mm, vhere m; = “;Q.
By 2.2, H(m,,m,) &lq.@zq/mlmzé}l(ﬁq,yzq), hence
T (P,Py) ZH(my,m;) = = (H(qa, %) q€Q), from which

the assertion follows at once.

3.7. Proposition. ¢ <Q,1,«?> =Ha . For any P,
cP£wP.dP. L P,

Proof. I. Let P =<Q,1, «> . By an easy induction
proceeding on | Q| it is shown that cP£Hu . From 3.6,
it follows at once that I"® 2 Hu for every c.d.e. P
of P, II, If P = (Q,® ,(« > , then
cP4& wP.dP.c < Q,1,«/wP > £ wP.dP. LP,

3.8. If @ 1is a projective subentropy, then ¢ P£cP
for every P.

Proof. Iet P = (P : xeD) be a c.d.e. of P. By 1.6,
1(4), for every x€D', @lL Pyo'Px1l £ T (PxO’le)‘ Sin-
ce ¢ is projective, 9P g+ 9P, + 9L PP 112 9P
for xeD’, This implies = (@L PrgsPgpd ¢ x€ D)2 ¢ P,
hence Z(T(PxO’le)= xeD)2 9P, 'P Z 9 P, which

proves the assertion.
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4, It remains to prove that ¢ is continuous.

4,1, I£ P  +P“=7p, wP£1l, dP£1, wP“ £ a, then
cP’ZcP - a,£P = H(a,l1).
Proof. By 3.4, cP’Z cP - cP” - ¢[P,P”]. By 3.7, c(P")£
4a.LP, Clearly, c[P;P“14H(wP, wP"” )£H(a,1).
4.2, Let p,r,s,t,u&R be positive, p<1l, r = p"l,
8<1, t =28 (1 -8)(1-p22(1+p)2 Let P =
= <Q, @, >, wP£1, dP£1. Let AcQ, B = Q - 4, @ (x,y)=
= 0 for xe A, yeQ. Then, for every c.d.e. P = (Px: x&D)
of P, u.'P & cPg -~ (2 + r)a.£P - H(s,1) - (1 + r)a H(1,t),
where a = WA,
Proof. 1. Put P, = <Q,§a,(wx> « For xe D, put wx =
= uQ, xx= wA, x= «B.PutZ={xeDd: xx>p,Bx3.
Cthoose an antichain Xc Z with Zc D(X). Then (1) = (P_:
:x€X)£P, (2) wP &(1 + r). x if x€Z, Put ¥ = {xeX:

txx2 Ax}, P; =P - = (Py:yeD(X)n Y) for xe€D - D(Y),
P, = 0 for xeD(Y), P’ = Pg', Pr=AQe, «fy >, P'x=
= w\B, Py, =P /MB, Then (Pg: xeD) is a c.d.e. of P,
?
Clearly, (3) Px - (3'x & xx if xeD - D(Y), (4) Py =P,
if xeX - Y. It is easy to see that (5) (1 +p). B'x 2
2(1 -p)e wx if x€ZUD(Y).
II. Let k = 0,1; put k = 1 - k. Put E; = D n D(Y),

E’ =D’ - Ey, E, ={xeE’: xkeY for some k }, Ey ={xeE":
for some k, xk€X - Y, t (3/(xk) 2 B/(xk) ¢ , Ey = £xeE’ :
: xk€X - Y for some k¢ - Eq, Eg ={xeE’: xXk €2, k = 0,17 .
It is easy to see that E; are disjoint, UE; =D . Put

- ’ - ’ ¢ -
T (x) = T'(Peo,Pyy)y TV(x) = T(Pg y00Pp 31 )s &5 =
= 2(T(x): xeE), gf = 2 (IM(x): xeky),
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g = = (cPp ,: xeE)). lemma 3.3 implies (6) gf +

+ Zi(gy: i =2,...,5)2cPg, By 3.7, cpg,x £ B’ x.2P,

hence (7) g{ £((Q +r)a.LP, by (1),(2). Clearly, gé = 0,
III. If xeE,, xk6X - ¥, then I'(x)4H( @’ (xk),

(' (xk)) £ B/ (xk) H (1,t), hence, by (1),(2), g5 £

£(1 +r) aH(l,t). - If xeE,, xk€X - ¥, put m = @ (xk),

T = @w(xk), b=p@(xk), b =@ (xk). Clearly, (8) tb<b.

Since xk&Z, (5) implies (9) bR Z(1 - p1 + p-l. Since

xkeX -~ Y, we have, by (4), oc(xk)<b, hence (10) 2b>m.

By (8)-(10) and 2.3, V(m,®)/V)b,B)Z (1 - s)(1 - p)(1 + p)~*

hence ug,Z g‘;. - If x¢ B, then, by (5), B‘(xk) £

£ -1+ p) @(xk), k = 0,1, hence, by 2.2, ug; Z&5.

Iv. By (6),(7), apd III, u,I'P ~ cPE; 2
- (1+r)a.eP- (1+r)aH(,t). By 4.1, cPgZcPy -
- 2,£P - H(a,l). This comple tes the proof.

4,3, For every T and every € > Q there exists a
d"> 0 such that if P%P, Pe WM(T), wP4 1, dP£1,
w(P - P') £ 0 , then lcP -cP 2 ¢ .

This is easily deduced from.4.1l, 4.2.

4.4, Let P = {(Q@,m> , P(n) = <Q, @ x> be
spaces, P(n)—> P (in WM(Q)), Then cP, — cP.

Proof. I, Let P = {P,: x¢<D? be a c.d.e. of P.
Iet Px(n) be the space obtained from Py by replacing @
with @, . It is easy to see that P, ={P,(n): x6D ¥
is a c.d.e. of P(n) amt TI'® —T2P , hence
lim sup cP £ cP. -~ II. There exist t <1 such that t,— 1,
and @, (x,y)2 t, Q(x,y) for all n and all x,ye Q. Hence
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>
cpn = tn. cP,

4.5, Propositioms 4.3 and 4.4 imply that ¢ is comti-
nuous. Hence, by 3.5 and 3.7, ¢ is a projective quasi-
entropy. By 3.8, ¢ is equal to the l.u.b. of all projec-

tive subentropies. The theorem 1.7 is proved.

5. Remarks., 1) I do not know whether there exist
projective quasi-entropies ¢ < c. = 2) A subentropy ¢
may be called inductive if ¢ P 2 ¢ Py + @ P, whenever
P= Pl + Pz. Problem: do there exist inductive quasi-ent-
ropies? - 3) let ® and « be, respectively, & semimet-
rie and a measure on M, If Xc M, Yc M, put @(X,Y) =
= J ¢ Eyaeminm, oD = FEN/ « @l
Consider finite measurable decompositions 7= (V.: keK),
U ¥, = M. Assume that there are sufficiently many, in a
sense which can be specified, decompositions (Vb) such
that So(Vh,Vk) < 0 for hkk, Define LVU1=L Vilina
way quite analogous to that in 1.5, and define
C <{M,@, > to be the limit, provided it exists, of
e LV] with respect to the filter of all ¥ described
above. Problems: (a) to find (M, ®, & > for which the
definition works, possibly after a suitable modification;
(b) to find a characterization of C analogous to that of
¢ in 1.7; (c¢) to intreduce C directly by means of suiteb-
1y defined c.d. expamsions (cf. 3.2). - 4) Concepts just
described may be useful e.g. if, in addition, a topology

on M is given and @ is continuous at every ( x,y), x%y.
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