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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,4 (1976)

DECOMPOSITION QF SPHERES IN HILBERT SPACES
P. ERDOS, D. PREISS ,Budapest - Praha

Abstract: A simple construction of a graph with %,
vertices and with the chromatic number 4, whose every sub-
graph spanned by £ vertices has chromatic number -4 &,
is given.

Key word: Chromatic number of a graph.
AMS: 05C15 Ref. Z.: 8.83

Assume the generalized continuum hypothesis. Consider
the unit sphere of the Hilbert space of ¥ypo dimensions.
We join two of its points by an edge if their distance is
greater than % . Since % < V3 the chromatic num-
ber of this graph is by the following theorem .., f{a
graph is called m-chromatic if one can color its vertices
by m colors so that two vertices which get the same color
are not joined, but one cannot do this with fewer than m
colors). O the other hand every subgraph spanned by ., 4
vertices has again by the following theorem chromatic num=-
ber £ @, . A different construction of such graphs is
given in [11].

This note was written at the Durham symposium on the rela-
tions between infinite-dimensional and finite~dimensional
convexity (1975).
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Theorem. Let ¥, £ n<m be cardinal numbers. Then
(i) - (iii) are equivalent and imply (iv), moreover, under
generalized continuum hypothesis they are equivalent to
(iv).

(i) For every ¢ > V 2 the unit sphere in a Hilbert
space of m dimensions can be written as a union of n sets
with diameter < c.

(ii) There is a number ce (V2, V3 ) such that
the unit sphere in £,(m) can be written as a union of n
sets with diameter < c.

(iii) There is a family € of subsets of m such that
card (€) < n and € separates points of m (i.e. for
<, fe€m ock (} there is a set C € € with
card (C n fec,33) = 1),

(iv) m<2®

Proof. The implicatioms (i) => (ii) and (iii) == (iv)
are obvious. (ii)== (iii): Let {A_; e n3j be sets in
lz(m) with dismeter « V 3 covering the unit sphere in
£,(m). For «, B3 € m, <+ (3 put

T 6 (¥) = YVZ tor r=x

="YVZter y=p

0 otherwise. .

Put Cy={ € m; there exists (3 e m, 3 o such that
Xx,p € Lo,
If «, € m oc + (3 then there is a d° such that
X p € A . Consequently, o € C, and [ ¢ Cys since
lx.,‘p - X5 Il 2 V73 for any 4~ . Therefore the family
{C€,; d¢ nl separates points in m.
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(iii) => (1): Let ¢ < & < -;.- . let A be a family
of subsets of m separating points of m. We may and will sup-
pose that A is closed under complements and finite inter-
sections. let 3 be the system of all pairs of finite se-
quences -i(Al,...,Lp), (rl,...,rp)} where A),...,h ¢ A
are nonempty and disjoint and rl,...,rp are rational numbers

1
that 1> X r5>Q -¢)% For e B, F=10,.e0,h),
(rl,...,rp)} put Cr= 4X € £5(m); x| = 1 and there are
«; € Ai such that 4,’%4
ve that the family {Cd«; d'€ B3 covers the unit sphere

(x( °‘i) - ri)2< e"} ., First pro-

in £,(m). If x eLy(m), I xl =1 find e« yeee; ¢, BuCh
that ly - x l<e where y(oc;) = x(ec;) and y() = 0 for
all other o« , Since A is closed under complements and fi-
nite intersections, we can find disjoint sets A; & A ,i=
=1,e.0,p such that &€ A;. Choosing r; sufficiently clo-
se to x(ec;), we obtain x€Cp, where o a-i(Al,...,Ap),
(rl,...,rp)} .
Let us estimate the diameter of Cyv. If X,y & C~ , choose
‘{E Ai’ ﬁiﬁ Ai’ (i = 1,oon,p) such that

n

2 2 2 2
2; (x(«,i) - ri) < € and 4.'g."(x(ﬂi) - ri) <e“,

Put xl(“i) = x(‘i), xz(xi) = ri for i = l,..-,p,

x,() = x,() = O for all other «,

¥1(B3) =y(Ps3), ¥(B3) =25 for i £ 1,...,p,

yl(ﬁ) = yz((B) = 0 for all other [} ,
Then 1 =|x - xl|2 +llx1|lzz lx - x1l2+ (nle-

- le-le)zzllx—xl\l2+(1-25)2

thus Ux-x, 0% 4¢ - 462 4 4¢y
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similarly we prove that [y - y;l £ 2 VE , therefore
llx-ylléllx-x1||+ﬂx1-x2,ﬂ+ ﬂx,‘,-yzﬂ-t Iy, -

-y1)|+ ly, -~y I 2 V2 + 4Ve +2¢.

(iv) = (iii): We can suppose that m = 22 and n is a
set of ordinals such that card T < n for any o« € n. For
A =4{C ; C = .
« € n and Bc'r,{‘ put &, 5 =4Ccn; CnT, B3
The family 4Acp ; < ¢ n, BcT, 3 separates points in e
and, sirce pcard T £ n, its cardinality is < n.

Remark 1: Not using the continuum hypothesis we can
prove (in the same way a8 in (iv) == (iii))that (iii) holds

for such cardinals n, m that

(a) mz2?
’ ’
(b) If n<n then 2%<n.
Remark 2: If &, £ n<mn are cardinal numbers satis-
o
fying the condition (iii) of the theorem and if n ° = n then
the unit sphere in Zz(m) can be written as a union of n
sets with diameter < V2. (One can take the covers <e,.,
. s 1 X

with diameter < V2 + r and put‘f:&@ Am,@; "'"1»6 ‘61.,}.)
Therefore the graphs obtained ty Jjoining two points of the

¥44o -—dimensional Hilbert space if their distance is

> V2 has the chromatic number K
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