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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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ON THE STRUCTURE OF FIXED POINT SETS OF PSEUDO-CONTRACTIVE
MAPPINGS
Rainald SCHONEBERG, Aachen

Abstract: ILet (E,! I ) be a Banach-space, X a closed
and bounded subset of E and let £3 X—> E be a pseudo-con-
tractive mapping. It is shown that under certain conditions
the set Fix(f) of fixed points of f is metrically convex and
hence pathwise connected. ’

Key words: Inward, nonexpansive, pseudo-contractive,
k-set-contraction, metrically convex, pathwise connect¢d.

AMS: 4TH10 Ref, Z.: 7.978.53

The purpose of this note is to give some conditions
which assure that the fixed point set of a pseudo-contract-
ive mapping is metrically convex amnd hence pathwise connec-
ted. A recent result of the aithor is basic for the proofs.

Definitjon 1. Iet (E, |l | ) be & Banach-space and XcE.

X is said to be metrically convex: (—>

= Y 3 z+xAzxyAlx-yh=lx=-zl+ly -zl
yeX  zeX :
X%y

Remark 1. Every convex set is metrically convex but
the converse isn’t true in general (E:= Rz, I 8§ := max-norm,
Xe=4(1tl, t)I tel-1,11% ).

A fundamental property of a metrically convex set is desc-
ribed by
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Propositiom 1 (K. Menger). Let (E, )l |) be a Banach-
space, Xc E be closed and metrically convex, x,yec X and
a:=lx-yk.

Then there is ¢ :[0,d ] —> X such that

1) g =xAaq@ =y

(ii) %b‘v;[o.dalg(a) -g(p)l =la-Dl

(i,e. ¢ is an isometry)
Proof see [1], Theorem 14.1.

Corollary 1. Let (E,lI [l ) be a Banach-space anl let
Xc E be a closed and metrically convex subset of E.
Then X is pathwise connected.
Proof: Obvious.
Corollary 2. lLet (E, i 1) be a strictly convex Banach-
space and let Xc E be closed.
Then X is convex if and cnly if X is metrically coavex.
_ Proof. If X is convex then X is obviously metrically
convex. Conversely suppose X is metrically convex and let
x,y€ X. By Propositionv 1 there is an isometry
@:lo, Ix - 3yH]—X such that (o) = x and
@(lix=-yHi) =y. Since (E, I §) is strictly convex, @
is affine (see L9]) and hence @llo, lix-yl1]l is com-
vex. Therefore co( {x,y? ):= convex hull of {x,y% ¢
cgllollx-yhllc Xi.e. X is convex.
Definition 2. Iet (E, I ) be a Banach-space, Xc E and
let £f: X—> E.
(1) f is said to be nonexpansive:(==> Vs'x I£(x) - £(y)le&

¥

Ilx -yl
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(2) £ is said to be pseudo-contractive : <=
e VYV A4 Ilx-yl£1Q+r)x-~-y)-r(£x) -
x,yeX XxZo
-2yNI

Remark 2. Pseudo-contractive mappings are characteriz-
ed by the property: f is pseudo-contractive if and only if
Id - £ is accretive (see [2)). It is easily seen that the-
se mappings include the non-expansive mappings.

In [111we proved the following theorem:

Theorem. let (E, | l) be a Banach-space and suppose M
is a closed subset of E such that every nonempty, closed,
bounded and convex subset of M possasses the fixed point
property with respect to nonexpansive selfmappings. Let g:

: M—> E be nonexpensive such that at least one of the fol-
lowing conditions holds:

(A) M is convex and g (M]lc M

(B) Fix (g)nou=g 1)

Then the (possibly empty) fixed point set of g is metrical-
ly convex and hence pathwise connected.

The approach of [4], showing how fixed point theorems
for pseudo-contractive mappings may be derived from the fi-
xed point theory of nonexpansive mappings, may be modified
to obtain the following two theorems:

Theorem 1. Let (E, | ) be a Banach~space ani suppose
X is a nonempty, closed, bounded and convex subset of E such
that every nonempty, clesed, bounded and convex subset of X
possesses the fixed point property with respect to nonexpan-

o

1) 9 M:= bdoundary of M
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sive selfmappings. let £f: X—> E be a k-set-contraction
(in the sense of the Kuratowski-measure of noncompactness
[6], xZ o), pseudo-contractive and inward (i.e.

xZax “3“{ c:l_o f(x) = x + ¢(u - x), see [3]).

Then Fix(f) is nonempty, bounded, closed and metrically
convex.

Proof. Let A € (0,1) such that A« k<1l and define
T: X— E by T(x):= x - A - f(x). Because f is pseudo-cont-
ractive we have

(1) >‘}74’6'6’(ll’.l.‘(x)--T(y)Il.Z(l “A)lx -yl

Let now y e X. Defining %: X—~ E by hy(x):= Af(x) +

+ (1 -A)y it is easily verified that hy is condensing (be-
cause A - k<1) and inward (because f is inward). Hence by
(81 there is x¢ X with %(x) = x j.e., T(x) = (1 = A )y. Thus
we have shown:

(ii) M:= (1 =A)XcTTX)

Because of (i) and (ii) we may define g: M— M by g(x):=

= (1 -l)T_l(x). Then g is nonexpansive (because of (i))
and every nonempty, closed, bounded and convex subset of M
possesses the fixed point property with respect to nonexpan-
sive selfmappings. Since Fix(g) = (1 =A)Fix(f) the theorenm
stated above gives the assertion.

Corollary 3. Let (E,ll ) be a Banach-space, @+ Xc E
be closed, bounded an convex and let f: X— X be a k-set~
contraction for some k<1 and pseudo-contractive.

Then Fix(f) is nonempty, compact and pathwise connected.

Proof. Let Cy:= ¢o(f [X]) and Cre1:= co (f[Cn]) for
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nzl. Then C, := nf>\1 C, is nonempty, compact and convex
such that £LCyplc C, (see e.g. [61). Furthermore

Fix(f)c C . Setting g:= ¢ I c Theorem 1 and Corollary 1
= -]

yield - observing Schauder’s fixed point theorem - that
Fix(g) is nonempty, compact and pathwise connected. Because
of 'Fix(f) = Fix(g) we are done.

Theorem 2. Iet (E, I I) be a Banach-space such that
every nonempty, closed, bounded and convex subset of E pos-
sesses the fixed point property with respect to nonexpansi-
ve selfmappings. Let furthermore XcE be open and bounded
amd let £: X—> E be a k-set-contraction (k = o) and pseudo-
contractive such that Fix(f)n 93X = &,

Then the (possibly empty) fixed point set of £ is closed,
bounded and metrically convex.

Proof, Choose A € (0,1) such that 2 .k<1 and de-
fine T: X—> E by T(x)t¢= x - Af(x). Set M:= T[X]. Then M
is closed because X is bounded and A f is condensing. Since
£ is pseudo-contractive we may define g: M—> E by g(x):=
:= (1 =A)T"1(x). Then g is nonexpansive. Now Nussbaum’s in-
variance of domain theorem [6] yields that T maps X into the
interior of M. Therefore 3 Mc T [3 X1 which implies that
Fix(g)n 9M = ¢, Observing Fix(f) = (1 - A) Fix(f) we are
done.

Corollary 4. let (E, ¢, ) be a Hilbert-space and
let Xc E be an open, bourded neighborhood of the origin., Let
f: X—> E be a k-set-contraction for some k>0 and pseudo-
contractive such that

x;dax a\./zo £f(x) = Ax =) A<1.
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Then Fix(f) is nonempty, closed, bounded and convex.
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