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A NONLINEAR OPERATOR IN POTENTIAL THEORY
R. KAUFMAN, Urbansa

Abstract: A property of the first eigenvalue of the
operator A 1leads to the solvability of a nonlirear equa-
tion whose main part is a singular linear equation.
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1. Let T be the nonlinear operator defined by T(u) =
= (A + 2+ p(u), where A is the laplacean in the unit
disk D: x2 + JZ< 1, p is continuous on (- @ , @ ), and
pw) =o(lul), limlp(w)l =+ , a8 lul— 0 .
The domain of the operator A is the space of all u, con-
tinuous on D. vanishing on 3 D, whose Laplacean (in the
sense of distributions) belongs to LZ(D); Green’s formula
confirms that these functions u are HSlder-continuous. Mo-
reover -c2 is the smallest eigenvalue of this operator, and
A is a closed, negative-definite operator.

Theorem. For each r>2 and each M, the set defined by
the inequality Il T(u)ll ,£M is compact in the Banach s pace
cl(D'), and the range of T meets L'(D) in a closed subset
of LF(D).

The range oontains IF(D) if and only if
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p(+® )+ p(-00 )<O,

This theorem was suggested by a remarkable paper of
Ambrosetti and Prodi [1] in which a similer use is made of
the first eigenvalue of the operator A .

2. The operator A + &2 is singula r precisely when
>0 is a zero of some Bessel function J,, and the eigen-
function for ¢ is £y = Jpoler); £5>0 within D, and the
normal derivative of f, is negative on 3D, (See L2, p.
373).) (Tables show that ¢ 2 2.40 and the next gzero is
= 3.83.)

Green’s formula, with zero boundary data,

£(z) = czsr)'l'_ff (A£)(z°) 6(z,2")ax"ay’

shows that if Afel , 2<r< co , then fe 01(])"), and

the first partial derivatives of f are H8lder-continuous

in exponent 1 - 2/rjthis is proved by means of Hdlder's
inequality and the potential-theoretic lemmas presented
in [3, p. 198). When 1< r<2 similar consideration

yields H8lder-continuity of f,.

To prove the first statement in the theorem we take
a sequence u,, in the domain of A , such that
l 2(u,) | £M. Supposing that my = luyll, tends to in-
finity, we proceed to obtain a contradiction. We write
u, = a,fy + v, where v, is orthogonal to £, in LZ(D), and
&, ia a real number. Since p(u) = o(| ul ) as |ul— + o,

we see that (A + cz)vn = o(m;) uniformly, and therefore
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in sz. By the discreteness of the spectrum of A , we
see that (A + ez')vn eand A v, are of the same magnitude
in Lz, whence v, = °("n) uniformly. We now observe the
identities

Avy, = (A + cz)vn - ¢:2vn = '.l'(u.n) = plw,) + czvn,

and deduce that Av, = o(mn) in Lr(Dz). Therefore v,

o(m,) in the Banach space Cl(D"), vhence vy,(z) =

"

]
L]

olm)) (1 - |zl ). We have also an‘-‘-"-"- m,, so that u,

]

anfa + v, has no zerces for large n, in view of the in-
equality fy(z)Z a(l -1 z|) valid for some a>0.

If, for example, &,> @ and p(+w) = + @ , then
p(un) tends everywhere to + ® , while p(u,)2 -C. But
(A + cz)u.n is orthogonal to fp, so [/ plw,)f,(2)dxdy =
= 0(1), while f£,>0. This contradiction shows that m, must
remain bounded. ‘

Now, by steps similar to the above, we find that
a, =0(1), so NAvyll, =0(1), and then the functions w,
are bounded, with uniformly H3lder-continuous partigl de-
rivatives, in exponent 1 - 2/r.

To prove the closure of the range of T in Lr, suppo-
se lim ‘i‘(un) =g in Lr; we can then select a subsequence
3, converging to u, in ¢t (p7). Now Auj = T(uj) -

- c%u; - p(uj) and Green’s formula shows that Ano =g -

J
- czuo - p(uo), or T(uo) =g,

3. Suppose now that p(u)=-C for all u; then
(T(u),£4)2 -C’, so that the range of T contains A £, only
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when A% A,

To complete the proof, we suppose that p(+ ) = + c0
ard p(- 0 ) = =c0 and prove that T(u) = g is solvable for
every g in Lr, r>2, First we solve a perturbed equatiom
T(u) + eu = g, for small € > O. We write this in the
form

(A + ¢ +e)u =g - p{u)

and observe that A+ c> + ¢ admits a bounded completely

continuous inverse in 1.2, for small € . let us define
- 2 -1
Ag(m) = (A +e2+¢e) L (g - ptu)).

Ak, is continuous because g€ 1? and p(u) =o(lul), and
compact, because (A + e + e)_l is compact. On the ball
lall,&N, we have [[A_ (u)ll, = o(N) so that A, is a com-
pact mapping of some ball into itself and admits a fixpoint
by Schauder’s theorem, i.e. a solution of the perturbed
equation. To obtain a solution to the original equatiom,

we prove that the solutions of the equatioms

(A +c2+g)+ p(u) = g remain bounded asa € —» 0O+, We
write u = ag £y, + v, , and suppoée that llull o Decomes
unbounded. Then lv, l\2 =o(1) lull, , and we observe that

= 2
Av, = g - p(u) - ¢v, - ea_ £,

Thus lvg ll,, = o(1)Nul_ , and finally v, = o(1) lull_,
in €1(D"). Hence u maintains the same sign, and €u + p(u)
tends to +o0 (or - co ) remaining bounded below (above),

so that the imnmer produce (T¢ u, fo) becomes infinite. This
completes the proof in the case p(+ c0 )>0, p(=00)<0. In
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the event that p(+ @ )<O, p(- @ ) >0 we employ the per-
turbed operator T(u) = € ue.

4, An extension. The main theorem remains true im
part for each r>1, but to verify this we must consider
the inverse of the operator A+ c2 on the appropriate
subspace of 1F. It seems likely that en existence theorem
remains true when r = 1, provided p’ is bounded; the ana-
lysis would be difficult since the solutions u are unboun-
ded.
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