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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

17,4 (1976) 

PROBABILISTIC RECONSTRUCTION FROM SUBGRAPHS 

Vladimir MtlLLER, Praha 

Abstract: In particular, it is proved that Ulam 
conjecture is true with probability 1. 

Key words: Finite undirected graphs, automorph­
isms of graphs, Ulam conjecture. 

AMS: 05CQ5 Ref. Z.: 8.83 

Introduction: It is proved that, given % > 0t 

asymptotically the most graphs with n vertices have all 

its subgraphs with at least ~r- (1 + e ) vertices asym­

metric (see [11) and mutually non-isomorphic. Particu­

larly, from this follows that the Ulam's conjecture [43 

is true with probability 1. The line analog of this re­

sult was proved in [21. Moreover, the following stronger 

result holds: For every ^ > 0 there exists n such that 

for every n> n the most graphs with n vertices can be 

uniquely reconstructed from its -r- (1 + €> )-vertex sub­

graphs. On the other hand, V. N^dl (Prague, Charles Uni­

versity) exhibited in his thesis an example of two non-

isomorphic graphs Q, H with 2n vertices with the same col­

lection of (n - 1)-vertex subgraphs. 

We consider finite undirected graphs without loops 
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and multiple edges. The set of vertices and the set of 

edges of a graph G are denoted V(G) and 13(G), respecti­

vely. 

A bisection f: V(G)—*» V(H) is called isomorphism 

from graph G to graph H if 4 x9y$ e E(G) <=-=-*> if(x)ff(y)ie 

6 E(H). 

An isomorphism f: G —*> G is called automorphism of 

G. In the usual sense, the term type of an automorphism 

is used. 

A graph with n vertices will be shortly denoted n-graph. 

For natural numbers p,k,n? p>2, kp-fSn, we shall denote 

S* ^(n) the number of all n-graphs having some automorph-

ism of the type (p,p>..#,i>>l>l>.»•,!). 
k-times 

A graph having a non-trivial automorphism is called sym­

metric, a graph which is not symmetric is asymmetric. 

Further denote S(n) the number of all symmetric n-graphs 

(It) 
and Gin) * 2 * the number of all n-graphs. 

Two statements are obvious: 

15 s(n)**4>«s--,p(*> 

. 2 .2 .2 . 2 = E^ (n) for every 

k>l, p22, kp£n. 

Let p>2, (1 + l)p£n« It is 

\*4*>(m') *%-&& .A 

»'* , s *~(ir7\- (fr-*>f -2 , where 
*>1* 
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A » np - kp2 - n - -£• + kp. 2 

Lemma 1: Let peH, p>l. Then pi .6 2 * ^ # 

Proof: Lemma 1 can he easily proved by induction on p. 

LemmaJ2: Let p>2 s k>l, n * (k + l)*.p. Then 

Kh On-) ' 

Proof: It is ***» • « — - . ^i ' * r—r ^ -f . 

Remark: I t holds for p = 2 , k->l f n * 2(k + 1) + 1 

**»4,fr at 1 £ .42, 
ft^^Cm.) 2.C&+1) 

Lemma 3 : Let e i ther p £ 3 , a 2 ( k + l ) . p or p = 2 f 

n > 2 k + 3 . 

H^^Cm.+ D V t ^ C ^ } 

P * T+ * ^ H * * * * * * 3 W ' » ) _f l»+4-*» /> 
proof: i t i s ^ ( # | i 4 . 4 ) - R ^ ^ ^ ) - *-Afr-fi*4 $>*-< 

I f p > 3 , n > ( k + l ) * p then ^M^-^^W^ 1 ^ - * • 

I f p - 2 , n > 2 k + 3 then ^ M ^ ^ A 'r^^f^T, - * . 

Corollary: Let p>.2, k > l , n.>(k + l ) . p . Then 

- * » M » y) 

Proof: Follows immediately from the previous lemmas. 

Proposit ion 1: Let p f k f s , n fee natural numbers, p > 2 f 

k > s > l , n > k p . Then \ f P ( n ) & B f l p ( n ) . 
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Putting k = 1 in the definition of R. (n), we get 

% ,P<*>= ( ; ) ( p - D i - a ^ . 2 ^ . > ^ 

Lemma 4: Let p 2, n = p + 1. Then ^tv"t"^ & 1 . 

&* +>.*.* (ft**) rt, A 
Proof: It i s - ^ ^ V ~ — — * 4 . 

&i,*> ( / f 2" f ^ ^ + 4 / X 

Lemma 5: Let p 2 , n p + 1 . Then 

K *±A ("i-hl) R . ^.A (m) 
iifH»i j^ i;H»+i 

-W (^+' f ) ~~ *-*,> ^ 
Proof: It i s 

Ä . , - (-Л+ 4) Ä , , ^ ŕл) л - f Ł 2 

Proposition 2: Let p2:q22 f n > p . Then R- -An) •£ 
-^P 

*"l,q(n)-
Proof: Follows easily from the lemmas 4 f 5,. 

Using the propositions lf 2f we get the following 

bound: S(n)** Jg S v n(n)-* -S % An) .* R, 0(n) + •A-jSa --tP ii-22 - M P i-f<: 

+ A ^.2 ( n ) + f>?3 V D ) i E l , 2 ( n ) + - - - « 2 , 2 < n ) + 

+ n .̂Hl>3(n) = ( - ) 2 ^ ) . 2~*. 2 + f (?)(V). 
2 ^ ^ - 6 . 4 . 4 + n 2 ( - ) . 2 . 2 ( ^ ) 2 - 3 2 l , 

2n . 2 ^ ^ + 12 - rP 2 a . 

Remark: It is clear that the number of #*apha with 

an automorphism of the type (2,1, ...,1) is bounded by the 

first term, the second term bounds the number of all other 
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symmetric graphs. Obviously the first term is greater than 

the second one for n sufficiently large, 
A r\ 

Lemma 6: Let ne N, a < ~~ . Then (1 - a) > 1 - na. 

Proof: This i s a well-known inequali ty. ( I t i s also 

easy to prove by binomic development of (1 - a ) n . ) 

Lemma 7: Lfct k£N, k 2 2 . Then ^ ^ — • ^ " > 4 • 

Lemma 8: Let £> 0> r 6 N. Then 

m.~><*> \[-fC1-e)J/ 

Proof: I t i s enough to take e » -?- and to prove 

1^ vjfj % - ] / * ° f o r e v e r v 2 * 0 , 1 , . . . 

. . . , 2 k - 1, n = 2kn' + z. I t i s 

[f . J%A) „ m,'cA-1)+ [ - - ^ - J - /»'(*.- 4 W . 

, „ , , r / 2 i t ( T J . ' + * \ ~C2-fe"t'+*> 
Denote V = (2kn + z ) r . (M.(]k,_„+ J - 2 

Let us count the l imit JSjimv •«* *•— =• it/m* —r-r • 
in'*-**.* A ^ / Ol'~>a? 2 ** 

(Wi* ,+2&+.«, )», . (Im/Jk + g-f-'f)  

Mft*-1)+xO...(.V(^ 

4 1 
2**- CЯг-^))fc-', ( Ä ^ ) * 4 1 
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by the lemma 7 and by the d'Alambert's convergence crite­

rion there is lim JL,, = 0* 

This proves the lemma 8« 

Notation: Let G « <V(G),E(G)> be a graph. Denote 

s(G) ss min 4 I It I ,Mc?(G) and ̂  iv<G>-M is s y - n m e t r i c I • 

(I.e. s(G) is the niinimal number of vertices of G, the de­

leting of which makes the graph symmetric.) 

For r-s n denote further S> (n) the number of all n-graphs 

G satisfying s(G) « r. 

Theorem 1; Let e > 0. Then 
A Df<4-*>3 

J&m, — ~ • S S*6n,) « 0 . 
GOn,) «~ o 

(i.e. the most of graphs have all its subgraphs with at 

least -j- (1 + e ) vertices asymmetric). 

Proof: Denote S'r(n) the number of all n-graphs 

G « < V(G),E(G)> which satisfies s(G) =- r and there ex­

ists a set Mc V(G), III » r such that the graph ^ I ^ m ) ^ 

has an automorphism of the type (2,1,•••,!)• Denote 

SnT(n) *- S^n) - S'r(n). It holds 

S'*C*0* (*)a (*--*)2 2 * 2 1 ^ a*6-—*> . 

The first two terms bound the number of (n - r)-graphs 

having an automorphism of the type (2,1,...,1) and the 

last two terms bound the number of all possible comple­

tions to an n-graph. In the last exponent we use the fact 

that s(G) is exactly equal to r and not s(G)<-c r. 

Further it holds 

S**C*/ .* (£ )«C .u- .oV-^2 l- ;2* C"-* > . 
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* -«*• g b So S ^ ) ^ 2 ^ 5 S 0 if* -> «-» " 

The last formula i s o i l ) . At the same time we &ave 

'И'-"-^.! 
for n — > co (see the previous lemma 8)* 

This proves the theorem 1. 

Theorem 1 cannot be improved as follows fcy "**-*
e
 follo­

wing proposition. 

Proposition 3; Let G « < V(G),E(G}> be a graph, 

lV(G)l » n = 2k + 1 (kcN). Then there exists a Symmetric 

subgraph of G with at least k + 1 vertices. 

If n « 2k then there exists a symmetric subgraph of G with 

at least k + 1 vertices. 

Proof: Let G » < V(G),E($) > be a graph, |V(G) I • 

= n =- 2k + 1. For x,ycV(G) let us denote d^(x) = 

= | -£z€ V(G), ix,zl e E(G)1 I the degree of x in G, 

dG(x,y) « 1 4z€V(G), ix$z \ € E(G) and 4y,zJ € B(G)J| , 

dQ(x) * d-^_G(x), d@(x,y) * dj, _^(x,y). It holds 

£*Jffl\&S **)'«&vw ^(*>+)-\$vc*)a*(*''+i ' 
As there i s dG(x) + d^(x) * n - 1 for every X€V(G), i t must 

z.m.^ťhUt) be«€VC<rA 2 '*&<& Z ' * ^ 2 ' * * t h 6 r e 6 X i 8 t tW° 

points x,ycV(G), x4*y such that d^x,?) + <L(2,y) 2 

> 2/nA &, / /7t~3 

" (2) 2 
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It means that graph G has the symmetric subgraph with 

tn. •¥ 4 
—r— vert ices induced by the se t 4 x,y } u { z€?(G) , 

4 z , x l € E(G) and i z fy } e KG) }u{%€ V(G), - U , x ? € E(G) 

and 4 z,y } € E(GH . 

This subgraph has the non-trivial automorphism exchanging 

the points x and y. 

Analogously, for n even there can be proved the existence 

of a symmetric subgraph with — + 1 vertices* 

Let e > 0, r, n£M, k * [ ~ (1 + e )] , 2k - n£r £ 

<£k - 1* Denote by K^n) the number of n~graphs G satisfy­

ing 

1) there exist two different isomorphic k-subgraphs of G 

having precisely r common vertices 

2) all subgraphs of G with at least -^ (1 + £ ) vertices 

are asymmetric. 

2 XM 
Theorem 2: Jtum, *»**-"" * - 0 . 

/n->*» Gim,) 

Proof: Put K(n> » * S ^ ^ a m 
/taHfe-m, G On.) 

k' s 'l v + I/J vWe wite shortly k' instead of 

k'(n) as well as k instead of k(n)). Obviously it is 

.K(n) -= K'(n) + KMn) + K ^ n ) , where K'(n) * 

s ?L - ^ x and Kw(n) » S ••>, T -

We divide the proof into three cases: 

I# Let 2k - n£r-»k'. It holds (even for every r) 

v ^ - it) ft) (£5) • ** • *! -r**%^Mi^-*' 
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K̂ Cm,) (K+Dto-^+K+l) <n,% mr f 

hence ̂ (a)-r^(n) for every sufficiently large n and for 

every r satisfying the conditions of the case I. Hence for 

sufficiently large n there is 

JS, KM,} £s IIVAJU C/»x) sr m, • (fi»S.»(h*\ ~ 

, u « /ww I M, I 4 
~ M!HM-M,")U*-.2M,*MMW ^^(t + I D - ^ ^ ^ H 

Obviously for sufficiently large n i t i s 

X#/ \ fft' • "*' • • MI - .-
(m,) .£ ^jr = *• 0 for n —> 00 -

2 ~ ^ 

I I . Let k# + 1.6- r.6 k - 2. We suppose that t i l sub­

graphs with at least ~ (1 • \ ) vertices are asymmetric 

Hence 

--^-.K)ft)&i).2^ <*-*)!«)• 
- 2 2 2 

a n d - f e * JESOT ** (^ " 

Analogously as in case I we can derive 

x;44tu)^ (M,-*) . »> j_m^f <***> 

K' (*t) Cx + 1) (m,~ 2i«/ +X-+ 4) ~ /** 

The last number is greater than 1 for every sufficiently 

large n and for every r satisfying the conditions of the 
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case IX. Thus for s u f f i c i e n t l y l a r g e n i t i s 3L,(n) & 

* * k - 2 ^ a n d 

K.i! U / W T?' f/O ^ C^/v21 a /* z v "* ^ **-
X (mJ^.X^lmJ-m,. ( £ ) - ( V ) ~ ^ 5 A ^ ^ ^ T -

The last term tends to 0 for n— » - oo . 

III. Let us notice that the number of all k-graphs G 

satisfying 

(i) all sufegraphs of 3. with at least k - 2 point® 

are asymmetric 9 

(ii) there exist two different isomorphic (k - l)-sufe-

graphs of G 

fey k • 2^ % • (k - 1) * (k - 1) • 24 2 • lc^ * . 

Farther let us notice that there is no asymmetric (k + 1)-

graph G which satisfies: 

(i) there exist two different copies of some k-graph 

G-̂  as subgraphs of G, 

(ii) all (k - l)-smfegraphs cf G-̂  are asymmetric and 

non-isomorphic to one another* 

From these Acts it follows 

^ ( n ) * (%).*. (n - k) • 2 . k* 2 ( V } . 2k . 2 ( ^ } . 

, 2 and ~j; % .& ^ ' a , — . 

However, the last term tends to 0 for n — > oo (see Lemma 8). 

This proves the theorem 2» 

From Theorems 1, 2 it follows easily: 

Coronary 1: Let e >* 0. Then the most of n-graphs 

(in the sense of limit) have all its subgraphs with at least 

-~ (1 • e ) vertices asymmetric and non-isomorphic to one 
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another* 

Corollary 2: Let e > 0. Then the most of n«graphs 

(in the sense of limit n — * oo ) are uniquely determined 

(up to isomorphism) lay the family of its subgraphs with 

[& (4+ e)J vertices* 

Proofs Every graph which has all its subgraphs on 

[~(4* e)] vertices asymmetric and non-isomorphic to 

one another, has the described property. 

Prom Corollary 2 it easily follows that the Ulam's 

hypothesis is true with probability 1. 
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fie skos lovensko 
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