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PROBABILISTIC RECONSTRUCTION FROM SUBGRAPHS
Vladim{r MULLER, Prahea

Abstract: In particular, it is proved that Ulam
conjecture i1s true with probability 1.

Key words: Finite undirected graphs, automorph-
isms of graphs, Ulam conjecture. ’

AMS: 05C05 Ref. Z.: 8.83

Introduction: It is proved that, given € > O,
asymptotically the most graphs with n vertices have all
its subgraphs with at least %"—(1 + € ) vertices asym-
metric (see [1]) and mutually non-isomorphic. Particu-
larly, from this follows that the Ulam’s conjecture [4]
is true with probability 1. The line analog of this re-
sult was proved in [2], Moreover; the following stronger
result holds: For every € > QO there exists n, such that
for every n> n, the most graphs with n vertices can be
uniquely reconstructed from its %,L" (1 + €& )-vertex sub-
graphs. On the other hand, V. Nydl (Prague, Charles Uni-
versity) exhibitéd in his thesis an example of two non-
isomorphic graphs G, H with 2n vertices with the same col-
lection of (n - 1)-vertex subgraphs.

We consider finite undirected graphs without loops
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and multiple edges. The set of vertices and the set of
edges of a graph G are denoted V(G) and E(G), respecti-
vely.

A bijection f: V(G)—> V(H) is called isomorphism
from graph G to graph H if { x,53% € E(G)<=> { £(x),f(y)ie
€ E(H).

An isomorphism f£: G—> G is called automorphism of
G. In the usual sense, the term type of an automorphism
is used.

A graph with n vertices will be shortly denoted n-graph.
For natural numbers p,k,n, p=2, kp<£n, we shall denote
Sk,p(n) the number of all n-graphs having some automorph-

ism of the type (p,PyecesDslylyece,l)e
k-times

A graph having a non-trivial automorphism is called sym-
metric, a graph which is not symmetric is asymmetric.
Further denote S(n) the number of all symmetric n-graphs

m
and G(n) = 2’(2') the mumber of all n-graphs.

Two statements are obvious:

-ﬁ.!;,sz2 Sk)p(n)

fepkm

1) S(n)#

2) Sy pm)e (). (" *e ko - 7%,

n-Rr)  (m-Sepn ) n )
2( 2 ) .2"3’ M g 2% . 2(2 = Bk’p(n) for every

k21, p22, kp<n.
Let p22, (1 + 1)p<n, It is

)
Rbﬂ,fz (o i

-A
= . -1!.2 wh
Ry ) et oo T
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2
A=np-kp2-n-?2— + kp. 2

-1
lemma 1: Iet peN, p>1. Then pt<2 .
Proof: Lemma 1 can be easily proved by induction on p.

lemma 2: Let pz2, k21, n = (k + 1)-p. Then

R o ()

T

m

S Raua 4 (a-n)! A
Proof: It is W-m';{@;’” £ el £ 1.

Remark: It holds for p

R‘“m (m) _ 3 cn

Ryp (m) 20Re®)

2, kzl, n=2(k+1) +1

Lemma 3: Let either p23, nZ(k + 1).p or p = 2,
nz2k + 3.
Rh*",ﬁ (m+4) P R‘h*ﬁﬁr (m«)
B‘h,p (m+1) Ree,pn (@)

Then

Rpsp@t D Ry p(m) med-hn 1
R‘hlf’ (m+1 Rk*“,»f;(‘n) M-M-M" 971

Proof: It is

m+A-Rpv 1 . p+1
If pz3, n2(k + 1)+p then g " Tn 7 “ o1 £ 1.

m+l-pn 41  p+2
m- Rp-fe+l 221 T 90.0n-1

If p=2, nz2k + 3 then =1,

Corollary: Let pZ2, k=1, n=(k + 1).p. Then

Bavt,p () .
Khm(rn) - -

Proof: Follows immediately from the previous lemmas.

Proposition 1: Iet p,k,s,n be natural numbers, pz 2,
kzs21, nZkp. Then Rk,p(n)éna,p(n)'

..711-



Putting k = 1 in the definition of Rk p(n), we get
’
- (™ (mz™) m-f %
B o = (gl -nre202 v 5T,

Ripea (n) m-p em el
= . v 2 2
R"m ) P n for nzp + 1,
(m)
Lemma 4: Let p 2,n=p+l.ThenMé4.
1,0 (M)
R (p+1)
Proof: It is —nfetd i A « 4.
Kqﬁ(ﬂ««rﬂ) h+l1 Y2
lemma 5: Letp 2, n p + 1. Then
B’1.fz+1 (m+1) . 31,11&4 (m)

pme) — R, o (M)

- 1
Proof: It is R"'""‘" (n+ D) qu( ) milr, T 1.
n (m+ - b SR m) m-t

Proposition 2: Let p=q=2, nzp. Then Ry p(n) <
1
P4
"Rl,q(n)'
Proof: Follows easily from the lemmas 4, 5.
Using the propositions 1, 2, we get the following
bound: S(n)s = Sy,pln) < = Ry p(n) Ry o(n) +

i wpm
+ Rk’z(n) + 4>e Rk (n)‘Rl’z(n) + n-R, 2(n) +
npp=m ’
(""2) m-12 m /mY(m-2
+n?.m g = (7) 2. 2R +-(>( ).
= i (m-3
(’B ) 241:.- 4. 4+n2(’gl) 2. ( ) 2'} <

!2.-1 n2_£
znza 2 + 12‘115 2 =

Remark: It is clear that the number of graphs with
an automorphism of the type (2,1,...,1) is bounded by the

first term, the second term bounds the number of all other
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symmetric graphs. Obviously the first term is greater than
the second one for n sufficiently large.

Lemma 6: Let neN, a < -}L « Then (1 - a)®21 - na,

Proof: This is a well-known inequality. (It is also
easy to prove by binomic development of (1 - a)?.)

41 -1
(+1) (-1) > 1,
&2&

Lemma 7: Iet keN, k=2, Then

Proof: It is

s 1Y gy 1Y% (4 4)‘“4(,,_ i)ﬁm
eYs A A

A e 21 () e B)e - D B

Lemma 8: Iet &> 0, réN. Then

g n m -m
fi’.’,”;”’“ ([ﬂ}cq-e)]) =0

Proof: It is enough to take €= and to prove

e

ﬂ/m« m® (2Xwn/+z)

Iz £

eeey2k -1, n =2kn" + 2z, It is

[% - 27) = oG- [BEL] =l aera”

for every z = 0,1,...

2kn’s % - (2km+z)
Denote An’ = (2m” + 2)7 . (m.'(sz-'fh P
Am+4 . 1
Let us count the limit Lum, —2= = dom —% "
m’~y a0 A —y 2

. (2m'fe+ 2k +2)... 2R 4+241) _
(o (o= ). (' (R-1)4 2% R~ 1) Gt Dt 2=z 4).... (Gt Dtz-2 % R+1)

1 (2%)”‘
T 2R (G )R (& 4 1)t

<4,
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by the lemma 7 and by the d‘Alambert ‘s convergence crite-
rion there i’,,,']_',i’:a i, =0,
This proves the lemms 8,

Notation: et G = {V(G),E(G)) be a graph. Denote
8(G) = min §1M| ,McV(G) and GIV(G)-M is symmetric § .
(I.e. 8(G) is the minimal number of vertices of G, the de-
leting of which makes the graph symmetric.)
For r<n denote further S¥ (n) the number of all n-graphs
G satisfying s(G) = r.

Theorem 1l: Let € > 0. Then
1 [gu-o])

= s™Mmy=0.

Roms i w0

(i.e. the most of graphs have all its subgraphs with at

least %(1 + & ) vertices asymmetric).

Proof: Denote SF(n) the number of all n-graphs
G = ( V(G),E(G)> which satisfies 8(G) = r and there ex-
ista a set Mc V(G), | M| = r such that the graph GlW(G)-M
has an automorphism of the type (2,1,...,1). Denote

s"(n) = s¥(n) - ST(n). It holds
n-k)- 3(m~re .
g% (mre (B2 (m-n)? 2 ST Y B) prtanen

The first two terms bound the number of (n - r)-graphs
having an automorphism of the type (2,1,...,1) and the
last two terms bound the number of all possible comple-
tions to an n-graph. In the last exponent we use the fact
that 8(G) is exactly equal to r and not s8(G)< r.

Further it holds .
(-2) = 5 (m-»x) n
S (m )« (’:) 12 (m__,c)sz‘("TL_‘ 2(2) 2Jr,(fn.-',,)
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4 [g0-©] 4 [% 4] 1 [20e)

”n 2 S"(m).
el Gy o S M= 2y S MTEm i
(Zd-o] sBLOL noaw , g2m827me

We have m=r 2 2 S“(m) < 12 m° ,E:o

The last formula is o(1). At the seme time we have

1% “-e)} %] _ m -
_é%;)' = SHm)£2mt = (:/)2 £ 2”"3([%"(1-5)])'2 —0

for n—» 0 (see the previous lemma 8).
This proves the theorem 1.

Theorem 1 cannot be improved as follows by the follo-
wing proposition.

Proposition 3: Let G = < V(G),E(G)Y be a graph,
V(@) =n =2k + 1 (keN)., Then there exists & symmetric
subgraph of G with at least k + 1 vertices.

If n = 2k then there exists a symmetric subgraph of G with
at least k + 1 vertices.

Proof: Let G = { V(G),E(@))> be a graph, IV(G)] =

= 2k + 1. For x,y € V(G) let us denote dy(x) =

|42eV(@), 1x,2% € E(G)3| the degree of x in G,
dg(x,y) = |12eV(@), ix,23 € E(G) and {y,z3 e E(G)3I|,

EG(x) = dxn_G(x) Eg(x,y) = dxn_e(x,y). It holds
%, 9—6\!(6) s (). + 2vcci)d' x5 -

d o) dg(x)
xtV(G)( 2 )+ ( )
Koy x*q.
As there is dn(x) + d3(x) = n - 1 for every xe V(G), it must

be er(G)(d (x)) V(G)(&’e(x)) 22"‘(@?) and there exist two

points x,ye€ V(G), x4y such that d5(x,y) + E'G(x,y) 2

> 2m.(’n— . m=3

@

XEV(G)
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It means that graph G has the symmetric subgraph with

m.;-'1 vertices induced by the set {x,y3¥u { zeV(G),

{2,x} € E(G) and {2,y3e E(G)}uizeV(G), {2z,x% € E(G)
and {z,y} €eE(@®3.

This subgraph has the non-trivial automorphism exchanging
the points x and y.

Analogously, for n even there can be proved the existence
of a symmetric subgraph with —;1' + 1 vertices.

let e>0,r,neN, k=[F Q1+¢e)],2k-nérz

£k - 1. Denote by K,(n) the number of n-graphs G satisfy-
ing

1) there exist two different iscmorphic k-subgraphs of G
having precisely r common vertices

2) all subgraphs of G with at least % (1 + £ ) vertices
are asymmetric,

R-1

Z X (M)
Theorem 2: Lim, La2om =0 .
m—» oo G(m)
51 Ky (m)
P : K = —_r 7
roof: Put K(n) u:za."hm S an
= [7 (4 + ‘%_')] (we write shortly k’ instead of

k’(n) as well as k instead of k(n)). Obviously it is
K(n) = K'(n) + K"(n) + K,_,(n), where K'(n) =

A-l
- X, (m) " _ 22 K, (m)
= nn2k~-m G{m) and K (n) - ’L:%‘-{-’l [e4 (M) )

We divide the proof into three cases:

I. Let 2k - n<r<k’. It holds (even for every r)
& n~2h+)19 _ ) NP
%\ (n-%| &) (227 (00w V-2 1) (G
Kn(mh_-('g)(n)(h_ AT P) o

- 716 -



KIL (m) 2z (%) &M&_—m - K

£ = X, (m) . Further it holds
G(m) Q- (1)
X (m) (% -n)? 2 1 2h-m 4 _ms-2
x+A = . —_.
Xty - M e 2 232 2l

hence 'r;(n)é ik,(n) for every sufficiently large n and for
every r satisfying the cenditioms of the case I. Hence for
sufficiently large n there is

m\ () (m-%
K'(nﬂLm,K m)=m - (b)(:u‘)(h,-j.,)
2

. mem! S! 4
21 (- (m-25%+ R 2»‘(§+§)-m(4*$;:7

In

Obviously for sufficiently large n it is

. !‘ h"
K'(mﬂém'”;z,_ — — 0 forn—» o .
2
II. Let ¥° + 14r<k - 2. We suppose that £ll sub-

graphs with at least %"— (1 + %) vertices are asymmetric.
Hence

Xyt 2 (2) () (5% 2 ot ().
2(m-n£~m) (n-20+2x)(28-2) M (-3 )CfR—2)

K | (B (3R) (e-mt o
am = - = X, (m)

Analogously as in case I we can derive

_.:Ltdfm.\’ (o -2) .o _!_.2%(143)
T(’,(m,) e N(m-2% +x+1) = m?

The last number is greater than 1 for every sufficiently
large n and for every r satisfying the conditions of the

AN
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case II. Thus for sufficiently large n it is K‘,(n) <
£ Kk_z(n) and

. _ m.)(h 2 (m.-b)_ 2 x? m*
K'(m)em . Ky, ()= m. (’“ 2(%2_7(&;22) ézz.&-m = ez

The last term tends to O for n— co .

III. Let us notice that the number of all k-graphs G
satisfying

(i) all subgraphs of @ with at least k - 2 points
are asymmetric,

(ii) there exist two different isomorphic (k - 1)-sub-
graphs of G
wre 205 L koD k-1)- 242 S
Further let us notice that there is no asymmetrie (k + 1)-
graph G which satisfies:

(i) there exist two different copies of some k-graph
G, as subgraphs of G,

(ii) all (x - 1)-subgraphs cf G, are asymmetric and
non-isomorphic to ome another.

From these fhets it follows

-1
@z (k. a-x).2. L5, 21:.2(""{‘l ).
Ky &
e ST SED Koy () (R)-m8
G (m) DS :

However, the last term tends to O for n —> c0 (see Lemma 8).
This proves the theorem 2,

From Theorems 1, 2 it follows easily:

Corollary 1: Let € > O. Then the most of n-graphs
(in the sense of limit) have all its subgraphs with at least

%’- (1 + ¢ ) vertices asymmetric and non-isomorphic to one
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another.
Corollary 2: Let &> O. Then the most of n-graphs
(in the sense of limit n —> co ) are uniquely determined

(up to isomorphism) by the family of its subgraphs with

[% 1+ s)] vertices.

Proof: Every graph which has all its subgraphs on

[% (1+¢)] vertices asymmetric and non-isomorphic to
one another, has the described property.

From Corollary 2 it easily follows that the Ulam’s
hypothesis is true with probability 1.
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