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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROKENAE 

17,4 (1976) 

VAN DER WAEREEN THEOREM FOR SEQUENCES OF INTEGERS HOT 

CONTAINING AN AlttTHMETIC PROGRESSION OF k TERMS 

J a r o s l a v NESlTfilL, VojtSch RODLt Praha 

Abstract; A theorem stated in the t i t le is proved by 
a direct construction. 

Key words; Partitionsf sequences. 

AMS: 05A99, 10LIO Ref. 2 . : 8.83 

Introduction. As analogy to [33 and Ll] it was con­

jectured by P. ErdSs the following (see £03): For every -Ct 

r there exists a set of integers N not containing an arith­

metic progression of r •** 1 terms with the property that for 

every partition of the set N into k classes there exists an 

arithmetic progression with r terms in one of the classes. 

The purpose of this note is to prove this theorem. In fact 

we prove here a stronger theorem ("the prototype theorem** 

in E43) from which one can deduce the characterization theo­

rem for partition properties of classes of sets if integers 

which do not contain "long" arithmetic progressions. 

After this paper was written we were informed that J. 

Spencer in about the same time solsred independently the 

Erd5s 's problem. Meanwhile the Spencer's solution was pub­

lished in [71. His method uses strongly a theorem of Hales-
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Jewett C8}. Our proof is by a direct construction and as 

it gives a slightly stronger result we decided to publish 

it anyway. 

Results: For natural numbers a,b,a-isb put Ca,b] -

«4a,a + l,...,bl . Let M « -tm0,...,mpS f N » 4n0,...,ne? 

be sets of natural numbers (these sets will be always con­

sidered with the relativized ordering of M and the nota­

tion will be always chosen with respect to this ordering| 

i.e. we assume m < m,<..#<my,). 

A mapping f: fit—> N is said to be sequential iff there ex­

ists a positive constant d such that f (m)) = f (m ) + 

+ d(m- - m ) and m. - sr + a€ M<==--> f(m ) + d aeN. 
Jl 0 2 . 0 O 

The van der Waerden theorem C63 then states that for every 

k,r there exists a finite set of natural numbers N such that 

for every mapping c: N — • Cl,kl there exists a sequenti­

al mapping f: Cl,rl—> N such that c© f is a constant map­

ping (we write c * f « § if ths actual value of the constant 

is of no importance). 

Denote by Seq the class of all finite subsets of H 

and by Seq (r), r2 29 the class of all finite subsets of N 

which do not contain an arithmetic progression with r + 1 

terms (equivalently Me Seq (r)<—=•> there exists no sequen­

tial mapping f: Cl,r + 1 3 — * H). 

We prove: 

Theorem 1: Let r£2, k>l be fixed. For every Mi c 

€ Seq (r) then there exists a set Ne Seq (r) such that for 

every mapping c: N ~—*Cl,k3 there exists a sequential map­

ping f: *-—* N such that e*f « §• «• 
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Clearly this theorem implies: 

Corollary: Let rs2 be fixed. Then the class Seq (r) 

with sequential mappings) has A-partition property <»*> I A I* 

= 1. (See £4,5 !1 for the definition of A-partition property.) 

To see this, one has only to observe that for every r>2 one 

can colour by two colours all arithmetic progressions with r 

terms in N in such a way that each arithmetic progression 

with r + 1 terms contains arithmetic progressions of both 

colours. (This is well known.) Thus we have the perfect ana­

logy with the situation in graphs: the characterization theo­

rem of partition properties of classes Seq (r)f compare £4]. 

The proof of the theorem 1 is a convenient modification 

of the Graham-Rothschild proof of van der Waerden theorem 

£23. We introduce now parameters and on each step of the in­

duction procedure we check that the resulting set belongs to 

Seq (r). 

Proofs: We write shortly (xi) for (x^ie £ lfm]) if 

there is no danger of confusion. 

Let rfm be positive integers, 0 4= co see&Seq (r)f moreo­

ver, let o> and -ae satisfy: x 6 <*) f y-<xf y & se *-& y e 

6co , Denote by SC<y fae frfm) the following statement: 

For every positive integer k there exists a set N « 

* N(<u faefr,mfk) with the following properties: 1) NeSeq(r); 

2) For every mapping e: N — * Clfk] there are numbers afdlf 

d2»... fdm such that 

Al: c(a + .23, xidi^ s c(a\ • , '2, y ^ ) whenever 

(xt) e cJ
tt
f (y£) 6 6)

a; 
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m .42: (xi) e ae <=> a * . 2 ^ x ^ e N* 

We prove 

Theorem 2: The statement S(co ,detrtm) is valid for 

each admissible choice of parameters* 

Proof: The proof will be by induction on I co I and m 

(for each admissible choice of at t and r)« 

Clearly S(o> faetrfl)t lo>l * lt is always valid. 

The induction step will follow from two claims: 

Claim 1: Let S(<a faetrfm') be valid for each m% m* 

Then there holds S(o> faetrfm + 1). 

Proof: Let k be fixed* Let N-̂  * N(^> fee tr fm fk) t I N-J »• 

• a and N2 « N(c-> tae trtlfk
&) • -tn.jj i e El-bUi be fixed 

(both sets exist by induction hypothesis). Define N by 

N » U ( ̂  * C-\ - nx)Dj i e C lfb3 ? where D « ar and 
Nl * ̂  " " l ^ * 4 n * (n^ - n^)D; neN.,1 • 

We prove N » N(<tft3efrtm + l fk). 

1) Assume N £ Seq (r): let P »«£a «* jdj j € Cc,r J f 

be an arithmetic progression in N, Then either there exists: 

ie tlfb3 such that I P n (^ + (n^ - n1)D) I .> 2 and in 

this case P£ N-̂  • (n^ - &i)*> ^ th,e cil0^ce °* ^ which is 

a contradiction with the properties of N, or I Pr\ (N-, + 

+ (n^ - Kj)®) ' ~ * for each i € IT lfb 1 and in this case we 

get a contradiction with the properties of N2.» 

2) Let c: N — > C lfk3 be a fixed mapping. We have an 

induced mapping c : N ^ — * Cl,k 1 x defined ̂ y 

c*(i) * c jjj * (n* - n )D* By tIie P1*0?®1**-*68 of N2 "fcIiere 

are n^, D-̂  such that 
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1) c ' ( n A + iD-^ m § for a l l i e o . 

2) n^ + i^e N 2 <=» i e a e . 

Furthermore (by the properties of N )̂ there are a ^ ^ f d g , . , . 

. . . , d m such that 

1) c (a + ^ - S 4 x ^ + (n 4 + xD-, - n-jjD) « 

* c ( a + . 2 ; x i ^ i * ^nK + X # D 1 " n l ^ whenever (x^) 6 a) , 

(x?) 6 c->m, x e a) , x*€ o , 

*7>ť 

2) a + ^-f̂  x ^ + (n A + xD x - n x )De N<—--> ( x ^ e « e t t
f 

x € -ae • 

Pat a = a + (n^ - n-^D, d^ s d.̂  for i c. Cl,m] , I J ^ * DUD. 

For these parameters the statements Al and A2 are valid. 

Claim 2: Let S(G> ,ee,r,m) be valid for each m. Assume 

<4> + 'ae , let q € ae^ co be the minimal number, put ST » 

* G> u «tq 3 . Then there holds S(oJf ae,r,l). 

Proof; Let k be a fixed positive integer. Take N * 

N(<^,ae,r,k,k)€ Seq (r). Let c; N — > C ltxl be a fixed map­

ping. By the properties of N there are a,di,«..,d^ such that 

to, to, 
1) c ( a + JJS/J x i ^ i ^ = c(& **?^f ^±^i) whenever 

(x ± ) e a) , (y±) 6 ca k 

to, k 

2) a + . S ^ x.|d-€ N<—«->(x4) e ca . 
So 

Consider the numbers a, a + q d - , , . . . , a + . 2 ^ Qdi€ N. Using 

Dir ich le t s principle there are o - £ u < v £ k such that 
AJU ir 

c ( a + . S . qd4) • c (a + ..Z!<„ qd.*). But then 

f ( x ) * a + . , S „ qd4 + x . 2 M &\ for x e w i s a des irab-

l e sequential mapping <3 > N with the property c © f *= §• 
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4JU V*. 

Moreover, a + .25L qd* • x. 33 -, d4€. N «-.-=*> x c ee -

This finishes the proof of Claim 2 and of Theorem 2. 

Now the theorem 1 is equivalent to the statement 

S(M»M,ryl), MeSeq (r). Let us state explicitly: 

Corollary: For every r and k positive integers there 

exists a set N of natural numbers such that: 

1) H does not contain an arithmetic progression with 

r + 1 terms| 

2) for every partition of N into k classes there ex­

ists an arithmetic progression with r terms in one of the 

classes. 

Remark: Given r, the bound given by the above proof 

on the size of the set N( tl,rJ t Cl,rJ ,r,k) is extremely 

large. However as the above proof is closely related to the 

proof of van der Waerden theorem we obtain similar bounds 

for these two theorems. This is one of the indications of 

weakness of the proof of van der waerden theorem. 
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