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ON NORMALITY REIATION AND ITS GENERALIZATION ON IATTICES
Juhani NIEMINEN, Helsinki

Abstract: Normality relation and its generalization
are on a lattice L binary, unsymmetric and reflexive rela-
tions with restricted substitution properties. The latti-~
ces of these relations are considered in the case where L
is & finite lattice, and a decomposition theorem is proved.
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1. Preliminaries and introduction. A binary relation N

on a lattice L is called a normality relation on L, if it
satisfies the following conditions of Dean and Kruse (see
Beran [1]):
(DKO) aNa for each &€ L,
(DK1) alb=> & <b.
(DK2) (aNb and cNd)== a~cNbad.
(DK3) (aNb and alNc)= aNbwvc.
(DK4) (aNb and cNd)= avcNavev (bad).
(DK5) fa<b and (aNave or cNave)i == av(bac) = ba(ave).
We shall call a binary relétion on L satisfying the condi-
tions (DKO) - (DK3) a generalized normality relation.

As one can easily see, normality amd generalized norma-

lity relations on a lattice are unsymmetric generalizatiois
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of lattice congruences and lattice tolerances (see e.g.
Zelinka and Chajda [2])). The purpose of this paper is to
determine a few properties of the lattice N(L) of all norma-
lity relations and of the lattice GN(L) of all generalized
normality relatioms on a finite lattice L. It will be shown
that in a class of finite distributive lattices, a lattice
of this class is directly decomposatle if and only if there
are two non-trivial generalized normality relations GK and
GM on L such that GKvGM = 1 and GKAGM = O in the lattice
GN(L).

The conditiom (DK5) is a restricted modularity condi-
tion, and hence it is valid in each modular lattice.

As a genersl reference in lattice theory we have used
the monograph [ 4] of G. Sz4sz. The few terms of graph theory
of this paper can be found in the book [3] of F. Harary.

2. Joins and meets of relations. At first we give a
characterization of“normality relations in terms of sublat-
tices of a finite modular lattice.

let L be a finite lattice. We denote by A = -(Atl te T}
@ family of convex sublattices of L, where T is a set of in-
dices, and by 0t and lt the least and greatest elements of
Ay respectively. Further, we assume that for each xe& L the-
re is a sublattice A e A  such that x = 01:‘

Theorem 1. Let L be a finite modular lattice, Each fa-
mily A of convex sublattices of L determine a normality
relation on L and conversely, each N determines such a fami-

ly if and only if for any two indices s,ueT there exist



indices p,re T such that
. = Z

(1) 0gA0, Op and 1 AL, lp,

(ii) 0gv 0, = O, and Ogv O, v (1 A 1,)£1,.

Proof. 1°: Let .A be a family with properties given
in the theorem. We define a binary antisymmetric relation
on L given by A as follows:

O Rxe=> xehg € A .

We show that R is a normality relation on L.

&Ra for each ac L, as for each a€ L there was a sub~
lattice A, € & such that O, = &, and so (DKO) holds. (DK1)
follows directly from the definition of R.

(DK2): Let aRb and cRd. According to the definition
a =05 and ¢ = 0, for some indices u,se T. Further, aAc =
= 0,0, = Qp and Op/_-b/\d;éla/\lué]p for some pel, and
thus the definition of R implies OprAd.

(DK3): ILet aRb and aRe, i.e. a,b,ce Ay for some teT.
As A, is a sublattice of L, bveeA,, and so aRbve. The
proof of (DK4) is similar to that of (DK2), and (DK5) holds,
as L is modular.

2%; Let N be a given normality relation on L. We shall
show that N generates a family $& of convex sublattices of
L having the same properties as A in the theorem. let
F, =iy| xNy, ye L} for each x€L, and we denote ¥ =
=4 Fy | xeL3.

As xNx holds for each x € L, there is, according to (DK1),
for each x€ L a set Fx € ¥ such that x is the least ele-
ment of F . As F, is finite, there exists an element w =

= Viy|yeF,t, and according to (DK3), xiw. For each
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velx,wlc L it holds vNv. By applying (DK2) to xNw and vNv,
we obtain xNv. Hence F, =[x,w] , which is a convex sublat-
tice of L.

Let xNy and zNv. According to (DK2), xAzNyA v, and on
the other hand FW € § . As xAzZNyA vV, then YAV £1, .y
and so (i) holds. (ii) follows similarly from (DK4), and
(DK5) holds, @s L is modular. This completes the proof,

The following corollary follows immediately from the
proaf above.

Corollary. Let L be a finite lattice. Each family A
of convex sublattices of L determines a generalized normali-
ty relation GN on L and conversely, GN determines such a fa-
mily if and only if for any two indices s,ue T there .exista
an index pe T such that (i) of Theorem 1 holds.

In the following we look for meets and joins of two ge-
neralized normality relations (normality relations). The as-
gertion of the following lemma is obviously valid.

Iemma 1., Iet L be a finite lattice and GN and GR two
generalized normality relations on L. The relation K, where
aKb¢==>-{abNb and aGRb} is a generalized normality relatiom
on L and K = GNAGR,

Analogous lemma holds also for normality relations.

If GM is a generalized normality relation on a finite
lattice L we denote the corresponding family of intervals of
L by A (GH), an interval of .A (GM) with the least element
xeL by Ag, and the greatest element of Ay OY lGIk' The
following theorem gives the most simple join of two genera-

lized normality relations.
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Theorem 2, Let GM and GN be two generalized normality

relations on & finite distributive lattice L. The fanmily

A (GH), where Ay, = [=,lguev long ) » determines a genera~
lized normality relation on L and GH = GMy GN if and only if
(1) L = Lyx Lyx..oxL,, vhere L; is a chain, i =1,...,n,
or

(ii) L can be divided into two convex sublattices L* and
I** such that L*a L** contains only one element, which is
0 of L* and 1 of L*% | L** js a chain and L* satisfies
the econdition (i) above.

Proof. 1%: Let L satisfy (i) of the theorem; it is
sufficient to show the validity of (DK2) - the conditions
(1X0), (DK1) and (DK3) hold obviously.

Let aGHb and c¢GHA; we shall show that dAb<£ (lGMaV lGN&)"
AQgyav Lone) € Iouanc Y loNan o At first, by applying the
distributivity, (1 v lGNa)A Lgyev lGNc) = (g~ ]'Gue) v
v (gre 1one) ¥ (Igpa” Tgne! Vv (lgna loye)s Where lg, A

A Lo © Tgane @ Igna” 1oNe £ lgna ncs 28 G and G are
generalized normality relations on L., In the following we

consider the term loga™ lGNe and show that it is equal to
or less than 1GNBA¢V 1GMaAc; the proof is similar for
Teme " toNa-

A8 L= LyxeeoxIy, a = (a1,855000,8,), ¢ = (cl,...,cm),
logg = (Xysre-erXy) and 1oy, = (¥y50+0,¥,), where a,c,,X;,
y3€ Lj. As aGMl,, end cGNl.. ., we obtain (al,...,ai,...
.-.,%)Gl(al,...,ai_l,xi,8i+1,.-.,an) end (cl'.."ci,‘..
ceesCp)ON(Cyy00esCy 1,731 4700 00sCy) e Furthermore, as L

. . . z
is a chain, a;£¢; or ¢;%a;, and we agssume that
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8; £¢;,i.e. a5AC; = 85, and X;AY; £%; holds glways. But
then (al,...,an)GM(al,...,ai_l,xi,ai+1,...,am) implies
(5000 183 _3985A Cla85 0,000 ,am)GM(al, o vsBi5X5 19X AV
ai+l,...,am). According to the properties (DKO) and (DK2)
of GM, we can now form the meet of both sides with (el,...
seeyC€i_13¥55C54700%3Cy)s and we obtain (agAeqyeeergp A
Aey)Gl(agA CyypeeesBy gACH 19X3A V5285 ACs 5000 ,8p A C ) 88
¢;%¥;+ So, in general, for each i, (ajAcy,eve 8, A

A e JOT(a1A Cyyeuey85 ALy 1,X5A Fi98549A CipseeerBpAicy)y
where GT isGM or GN, i = 1,...,m. Let z be the join of all
elements (aqA CyyecesBy 1A Cy_19X3 N3y 8547 C 490000
soes@pAcy) which are in the relation GN with (8,ACq,...
ceey8pAcy) for some value of i, and let the corresponding
join be w in the case of GM; these joins exist aecording to
(DK3). As GM and GN are generalized normality relations and
ancGly and aAeGNz, w< 1(}“&\c and z""'lGNaAc’ and tri;ial-
ly, wvz = (x;A FyseeesZgAT,) = lgya A lgy,, where wvz &
£loyaneY lGNamc‘ As mentioned above, we can similarly see

that lgy.” long % lomanc™ loNanc®

As each term of the join (IGMaA lGMc)V(lGNa'\IGNc) v

V(g A 1GNc)V (IGMcAlGNa) is less or equal to
IGMaAcV lGNa:\c’ the join satisfies this relation as well.

Hence (lgy Vv lgg) A (Lo Lg% IygoaoY onane®

The proof for the lattice L satisfying (ii) is a repe-
titiom of the proof above, and hence we will omit it. For
completing the proof of necessity we must show that GH =
= GMv GN. Let GK=GM,GN, and so for each xe L, xGKlGMx and
xGK1yy . According to (DK3), xGK(1qy v l.ny)s Whence GKZ GH,
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and thus GH = GMv GN,

2%: Let GH be the join of relations GM and GN on L,
and Agp = [x,1g, v lggy) + Let us remove from the Hasse
diagram of L all the points and the lines incident to those
points, which are meet-reducible in L. Remove further the
chain C, eontaining the zero element of L, if such a chain
exists., If the diagram graph thus obtained is empty, L was
the chain C,, and the theorem holds. If not, let us consi-
der the graph D obtained. If it is a tree, where the degree
of point 1 only can be 3 or greater, then there is nothing
to prove: the chains of this tree are the factors I.i,....lh
in (i), as the elements of a finite distributive lattice can
be uniquely represented as meets of meet-irreducibles.

Assume that D is a tree and there is a point az1l with
the degree at least 3. Then there are in D two points x and
y which are meet-irredueible in L. Let us consider the sub-
lattice of elements {xAy,X,y,8,z% of L, where z€ D, and
a<q< z holds for no ge L (e.g. 8—< z); such an element z

exists in L as D is a tree amd az 1 (see Fig. 1(a)). We de-
2

fine
. N B
, N VAN N
\/
Ay \4 uAy
(a) (v) (e)
Figure 1
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a generalized normality relation GM as follows: RGMS &—>
<>r =8 or 3qelLsuch that r = yAq and s£zAq; ob-
viously GM is a generalized normality relation on L. We
define another relation FN analogously: tGNu<=> t = u or
J peL such that t = pAX and u<£zADp. One can easily
see that tx/\y,lemv lGNx/\yJ = [xAy,a], but it holds
for each GKZGM,GN that xGKz and yGKz, whemce xAyGKZ, as
well, But z4¢ [xAy,8], which is a contradiction. So in
the tree D only the point 1 can have degree 3 or greater.
Assume that D is unconnected graph. Let x be the point
of D such that x+#1, but all the points hl”" hnx which

are joined by a line to x in D are less than x in L. As the
‘chain Co has been removed, there are in L also elements

that are less than x. On the other hand, as xs#1, there is
also a meet-reducible element & in L satisfying x—<a, and
let the shortest meet-representation of a in terme of meet-
irreducibles contain an element z ¢ L.As the chain Cy has been
removed, there is in L an element y such that yvx = a, or
there are two non-comparable elements u,y<x such that x =

= uvy (see Figures 1(b) and 1(c)).

In the case of Figure 1(b) we define two generalized
normality relations GM and GN as in the case above. There
are not two non-comparable elements b= x and ¢y such that
bve = 2z and bAc = x;\y, as in the other case bAa = x, be-
cause bAc = XAy, a> x, aZy and c=y. Hence z ¢ [xAy,
lmv lGNx Ay] , and we get the desired contradiction.

In the case of Figure 1(c), the relations GM and GN
can be defined as follows: rGMs &= r = 8 or 3 pe L such
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that uAp = r and aAp=8, and tGNve= t = v or 3fe L
such that fAy = t and £fA a>v. The assumption in the case

of Figure 1(c) says that there are not two nan-comparable

elements b2u and c2y such that bve = a and bAe = uay,
as in the other case bvyx = a or cvyx = a. Hence a¢ Luny,
IGHuAyV lGNuAyJ . So D must be a connected tree, where only
the point 1 can have the degree 3 or greater. This comple-
tes the proof.

The following lemma gives a join construction for gene-
ralized normality relations in the general case.

Lemma 2. Let GM and GN be two generalized normality
relations on a finite lattice L. Then the family A (GH) =
=4la,lpv Lonav U I | @€ LY, where U, = 3§ (1gp v 1on v
v Ux),\(lmb,v Igngv Uy) | Sa is the set of all pairs x,ye L
for which xAy = a }, generates a generalized normality re-
lation GH on L and GH = GMvGN,

Proof., 4s U,,, contains at least the term (lgy v lgy,V

VU A (QgyeV 1gneV Ug)s then bAd e [ane,lgy, v Iomanc Y
vUg el and (DK2) holds for aGHb and cGHd. The other condi-

tions hold obviously.

Let GP be a generalized normality relation on L such
that GP=GM,GN. Then xGPl,, and xGPl’GNx for each x¢ L, and
80 xGP(1gy, v 1oy ), as well, According to the property (DK2)
and to the finiteness of L, also xGPU,. Hence xGP(1ly, Vv
v Iong Y Ux) for each x€ L, and thus GP>GH. Consequently,
GH = GMv GN, and the lemma follows.

The following lemma gives a construction for the join

of normality relations analogous to the results in Theorem

2.
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lemma 3. Iet M and N be two normality relations on a
finite distributive lattice L. The family A4 (H) = {La,L,v

vigv¥,)| aeL}, where w, = Y/ (lklv llxl)"(lllx v
vlﬂxz)/\.../\(l"xnv 1%)1 S is the set of all sequences

XyseseyX, for which a = xqv X,V ...vxn,n22 % , generates
@ normality relation H on L and H = NvM, if L = LI,x L, x
Xo.ox Ly, where I; is a chain for each value of i = 1,...
eco,yMo

Proof. Let us consider first the condition (DK4). Let
&b and cHd; we must show that avev(bAd)cave v{ (Vv
¥ lgaV 'a)'\ (L v Ige v V.)} e Lave,ly oY IyaevVaved e
By applying the distributivity we see that lllhv Y 'a)'\
AV Lyov Wo) =4 (pv Iy ) A (lgev 1g )3 v £ WALy v
Vige)d v AV A (v Y3 v 4 W, AW 3 < W, according to
the definition of 'we' As ave£ly, v ]‘Nave’ the assertion
follows by combining these two observations.

(DKO), (DK1) and (DPK3) hold obviously, and so we shall
consider the condition (DK2) only. Let aHb and cHd. The re-
lation H satisfies (DK2), if BAd & (Lyv Lg v W I A Qv

vlhv‘lc)e Lanc,dy oV IgaieY Yane 1+ A8 above, we consi-
der the term {(ly v 1g JA(ly v g ) ¥~ Wo ALy v 19 0% v

VAW A (v )Y v AW AW Y = (Lv 1 v Vo) A (Qye v g v
V'e)‘ Similarly as in the proof of Theorem 1, we can show
that

(1) (v L2 A (v ].Ne)é Lyane" Wane®

As anc = (174 e)v (xpAe)y ess v(x, A¢) for éach sequence
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x1!’2":"’% with the property XV ...vx, = a, 'eu\e >

2 (luxl,\cv lﬂxlAc)A"’A(l!anCVIanAc) z{(lklv lkl)/\
AL vy ) 3 Al (lhzv 1Nx2)/\(1,,¢v Wd¥Aeeend (lu,hv
Vlllxn)A (Qeviy)t = {(lklv lnxl)/\ coeA “’llxnv IN!," iA
ALV 1y, )s By forming the join of all terms 4(1,‘:1\/ 1&1»\

A.../\(lknv ].an)i A (Vv lge), where xy;Vecovx =3,
we obtain the term WoA (1,.v ln), and as each member of

the join was less or equal to 'aae’ then

(2) WoneZ WAy v g )
Similarly we see that
(3) W oZ VoA (v 1y,

Consider finally the term W AW,. Let a = XV eee VX, and
C = F1Y eeoV¥y,, then aAc = (A TV (XAY) V.o
V(X AY) V(XA TRV (AT V eeev (AT, Vv (XA 13) v
Voees Vixpn yn). Aceording to the definition of 'Me >

2 u“’r‘h" 1“‘1"31) A (lllszyl" INszyl)A ese A(llan;.V
v lkn'\yn). On the other hand, A

(L, 1"’1V 1""1"’1)2 (\lklv ]-le)l\ (1'y1v l“’l)’

iyt iy iy Z G, T, ~ oy, ¥ g, s

(lwylv IanAyl)Z (lu‘nv Ian) A'(lwlv 1Ny1)'

(luxn,\y'v lﬂ‘z{‘yn)z (]Ixnv Ian)A (1"’.\/ 1,"),

and by forming the meets of both sides and by ordering the
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terms in the right side, we see that Wy, = (luxl"yl v

1 )Ac.o/\(l v 1 )2( v )/\

A NxqAY 4 Mz AV TNXAYL llkl I'le

1 eee Al ( Ia( v
Vlnyz)/\ cee /\(luynv lﬂyn)._
By forming the join over all pairs Qxl,...,:%) and (Fyseee
...,ym), where X;V +ee VX = & and y1V e.o V¥, T ¢, We see
that
(4) L
By combining now the results (1),(2),(3) and (4) obtained
above, we see that (L v Iy v W ) A (Y v L v W )< (1, Vv

V xane Y ape) e Obviously aAe £(LypV gV W I AL v Ty v
Vv W,), and the assertion follows. So H satisfies also (DK2),

>
P 'a/\ LA

and hence H is a normality relatiom on L,

Let K be a normality relation on L such that KZN,M,
According to (DK3), xK(1y v 1,.) for each xeL, and accord-
ing to (DK4) and (DK3), xK(xv W,) for each x€ L. By apply-
ing (DK3) once again, we see that KLy v 1y v W,) for each
x€ L, and hence KZH. Thus H = Nv M, and the lemma follows.

Now we can prove a theorem on the distributivity of
the lattice GN(L).

Theorem 3, The lattice GN(L) of all generalized nor-
mality relations on a finite lattice is distributive if and
only if L is distributive and GH = GNv GM is determined by

the family A (GH) =40 x,loq v 1oy, ) |xeL?,
Proof. Let L be a finite distributive lattice satis-

fying the condition of the theorem, and GK,GN and GM three
generalized normality relations on L. It is sufficient to

show that GKA (GNvGM) £ (GKAGN)~ (GKAGM), from which the
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distributivity of GN(L) follows. Let & {GKA (GNv GM)% b=
&> aGKb and a(GNwv GM)b, Furthermore, a(GNvGM)b==>Db €
elalgnVv gl , and 80 b = BA(IgreV 1ny,) = (DA lgp )y
VI(bALy, ). Trivially, a(GKAGN)(bv 1gy,) and a(@KA GM)(bv
VlGMa)' which imply according to (DK3) that & § (GKAGH) v
~ (BKAGN)$% b, Thus GK A (GNv GM) = (GKAGN) v (GK AGH).

In the converse part we shall first show that L is ne-
cessarily distributive., If L is non-distributive, it con-
tains as a sublattice at least one of the lattices L’ and

L" of FPigure 2. Consider first the case of sublattice L',

e As L is finite, we can
b e construet five norma-
a 1lity relations such
, 2 that the only nomtri-
L il

vial interval in

the family A generat-

ing the relations is [0,q], [0,a], LO,b], L0O,e] or [0,e];
we denote the corresponding relatiors by G [0,ql ,G [0,a],

Gro,b1, G[O,c] and GLO,e1 . Clearly these relations form
a non-distributive sublattice of the lattice GN(L) as Uoé Qe
Similarly we see that the lattice GN(L) of a lattice L con-

taining L" as sublattice, contains a non-distributive subla-
ttice. Hence L is distributive. .

If the .join GH = GNvGM cannot be generated by the fa-
mily A (GH) =4Lx,1y vl 1| xeL?, ve obtain the ca-
ses of the proof of Theorem 2 given in Figure 1. In the cases
of Figure 1(a) and 1(b), we define GK as follows: sGKu <==
&8 =uor Ftel such that tA(xAy) =8 and tAzZu,
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As L is distributive, GK is a generalized normality rela-
tion on L; GN and GM are defined similarly as in the proof
of Theorem 2. So (xAy){ GKA (GNvGM)} z. Aceording to the
definition of GK, for each d>xAYy, Aggq =14,4], and hen-
ce Uw = xAy for (GKAGM) v(GKAGN). On the other hand,
the proof of Theorem 2 shows that there are not in L two
non-comparable elements bZx and ¢y such that bve =3z
and bAC = XAy, whence the relation (xAy) { (GKAGM) v

v (GKAGN) 3 z does not hold. The proof is similar in the

case of Figure 1(c). This comple tes the proof.

3. On direct decompositions. At first we prove a
theorem on direct decompositions by means of generalized
normality relations.

Theorem 4. Let L be a finite lattice such that L =
= LyxLyx...xL, where L{ is a chain., L has a direct de-
composiiiom if and only if there are two nontrivial gene-
ralized normality relations GM, GK ¢ GN(L) such that
GHMAGK = O and GMVGK = 1 in GN(L).

Proof. 1°: let L = L;x L,. We define two relations as
follows: aGib¢=> a = (xy,X;), b = (xl,yz) and X, £Y,;
cGKd ¢==>¢ = (zl,zz), a= (vl,zz) and z1£ wy. It is an exer-
cise to show that GM and GK are generalized normality rela-
tions on L; we shall only aho'.that GM and GK are comple-
ments in GN(L). Let t<4u in L, where u = (uy,u,) and t =
= (t3,t,). Then (ul,uz)Gl(ul,tz) and (wmy,u,)GK(t;,u,). Fur-
thermore, (ty,%5)v (uy,ta) = (uyv t5,u,v t3) = (2),t,), and
8o the relations above imply a(GKwvGM)t. Hence GMvGK <= 1,
If h(GMAGK)f, then according to the definition of GM,
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h; = %) inh = (h,,h,) and £ = (£,,£,), Similarly GK imp-
lies that h, = f,, whence (hy,hy) = (£,,2,) =h = £, Thus
GKAGM = 0,

2°: Iet GMAGK = O and GMVGK = 1 in GN(L). We shall
show that L = [0,15,4] = [ 0,15y0]s Each join-irredueible
element of L belongs to one of the sets [0,154,] 0,107 «
Indeed, assume that x is join-irreducible and x ¢ L 0,1345]
[0,1g0) « Then x € [0’1GK0VIGM0] , 88 GMv 6K = 1, So
xA (LggoV Lgyo) = (xA lggo) v (XA loyo) s from which it fol=-
lows that x is join-reducible, or lgyq = 0, or 1Glm = 0,
and x € [0,1551, or xel 0,15g0 1 » Tespectively; & contra-
diction in each case. Furthermore, GMAGK = 0, and 8o
L 0,1gy0 InL 0,150l = £0%., As L is finite and distribu-
tive, for each z€ L, z is the join of suitable join-irredu-
cibles, i.e. z = (\/i(qu)i)v( vj(pgl();j)v where (qéx)i_ is
a join-irreducible of [0,lgy,) and (péu) j & Join-irredu~
cible of [0,1g,] . Clearly Vi (aggds = Gog € 10,150 1
and vj(p(’m)j = pgn € [0,1Gn°] « We map z onto (qéx,pgu).
Aceording to the uniqueness of the joinrepresentation by
means of join-irreducibles in a distributive lattice, the
mapping is a lattice morphism, If z has the figures
(qéK,ng) and (qé%,pgi), then the uniqueness of the joinre-
presentation implies that pgm = pé,]i and qéx = qzéK. Similar-
ly we see that each element of [0,15p,]1 % L 0, 1gy0] hae an
image in L, and hence L = [O,lGKo'JxE 0,10l « This comple-
tes the proof.

As in the case of the preceding theorem GN(L) is dis-

tributive,one can prove the following generalization by an
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analogous way.

Corollary. Let L be a finite lattice, L = L/x...
«eexLy, where Li,...,I‘; are chains. L has a direct decom-
position with n factors if and only if there are n nontri-
vial generalized normality relations Gﬂl,GIlz,‘..,Glln such
that leAGllj = 0 for each paﬁ k,j, k#¥Jj, and GM, v GM,, v
Veeev @@L =1 in GN(L).

The following theorem gives the corresponding result
in the case of normality relations.

Theorem 5., Let L be a finite lattice such that L =
= Ly X .00 xLy, where Lj,...,L are chains. L has a direct
decomposition if and only if there are two nontrivial norma-
lity relations K,Me& N(L) suech that KAM = 0 and KvM = 1 in
N(L).

Proof. 1°: Let L = Ly L,. We define K and M similarly
as the generalized normality relations of Theorem 4: akb<i=>
> a= (al,az), b= (al,)z) snd mzi- by; cMde==c =
= (e1,¢5), @ = (&;,d4;) and c,4d,. We shall show that (DK4)
holds for K; the proof is similar for M, Let akb and fKh.
Then avf = (av f,,8,V £,) and hAD = (854 £3,05Ah5).
Further, avfv(hAbd) = (a;v Ty viagat)), ayv £,v by A
ARy)) = (a;v £7,a,v £,V (byAN,) ). The first components
of avf and avfv (hAD) are the same and a,V f 48,V T, Vv
v (byAh,), whence (avf)K(avfv(hAb)). The other condi-
tions hold obviously, and hence K and M are normality re-
lations. The latter part of 1° is a repetition of 1° in
the proof of Theorem 4, and hence we omit it.

2°: We shall show that the conetruction of the proof
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2° of Theorem 4 holds. We must only show that each join-ir-
reducible element x of L belongs to [0,l;y] or to [O,Juol 3
in fac;,, we show that lygvly, = 1 in L. Let us consider the
normality relation KvM. Ay o = [0,1pqV lyv¥l, and as
the only join-expression for O is 0 = 0vO, ¥, = (]‘KOV
v o) A (o Vv 1yg) s we see that Ay 0 =[0,1pnv 1,07 o Far-
thermore, as KvM = 1 in N(L), then Ag uo = L» end hence
1K0v luo = 1 in L. The rest is a repetition of the proof 2°
in Theorem 4.

As we have not shown the distributivity of N(L), the co-
rollary of Theorem 4 need not hold in the case of normality

relations,
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