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17,4 (1976) 

ON NORMALITY RELATION AND ITS GENERALIZATION ON LATTICES 

Juhani NIEMINEN, Helsinki 

Abstract: Normality relation and its generalization 
are on a lattice L binary, unsymmetric and reflexive rela­
tions with restricted substitution properties. The latti­
ces of these relations are considered in the case where L 
is a finite lattice, and a decomposition theorem is proved. 

Key words; Finite lattices, normality relations, gene­
ralizations, the lattice of relations, decomposition* 
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1. Preliminaries and introduction. A binary relation N 

on a lattice L is called a normality relation on L, if it 

satisfies the following conditions of Dean and Kruse (see 

Beran [1]): 

(DKO) aNa for each aeL. 

(DK1) aBb=$> a^b. 

CDK2) (aNb and cNd>=-» &AcNbAd. 

(DK3) (aNb and aNc)=-==> aNbvc. 

(DK4) (aNb and cNd)==?> avcNavC v (bAd). 

(DK5) -ta£b and (aNavc or cNavc) }=-=-> av(bAc) * bA(avc), 

We shall call a binary relation on L satisfying the condi­

tions (DKO) - (DK3) a generalized normality relation. 

As one can easily see, normality and generalized norma­

lity relations on a lattice are unsymmetric generalizatioms 
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of lattice congruences and lattice tolerances (see e.g. 

Zelinka and Chajda 12]). The purpose of this paper is to 

determine a few properties of the lattice N(L) of all norma­

lity relations and of the lattice GN(L) of all generalized 

normality relations on a finite lattice L. It will be shown. 

that in a class of finite distributive lattices, a lattice 

of this class is directly decomposable if and only if there 

are two non-trivial generalized normality relations GK and 

(M on L such that GKyGM » 1 and G K A G M * o in the lattice 

GN(L). 

The conditions (DK5) is a restricted modularity condi­

tion, and hence it is valid in each modular lattice. 

As a general reference in lattice theory we have used 

the monograph L4] of G. Sz&sz. The few terms of graph theory 

of this paper can be found in the book [33 of T* Harary. 

2. Joins and meets of relations. At first we give a 

characterization of*normality relations in terms of sublat-

tices of a finite modular lattice. 

Let L be a finite lattice. We denote by A s 4A+ | t e T j 

& family of convex sublet tic es of L, where T is a set of in­

dices, and by 0. and 1+ the least and greatest elements of 

A., respectively. Further, we assume that for each x€ L the­

re is a sublattice A^ c Jl such that x » 0^. 

Theorem 1. Let L be a finite modular lattice. Each fa­

mily A of convex sublattices of L determine a normality 

relation on L and conversely, each N determines such a fami­

ly if and only if for any two indices s,ueT there exist 
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indices p-re.T such that 
( i ) V^°u*%M dV^~V 
<**> ° s v 0 u = °r »* W W - V 
Proofs 1°: Let Jl be a family with properties given 

in the theorem* We define a binary antisymmetric relation 

on L given by Jl as follows 2 

OsHx<?=» X 6 A g 6 A . 

We show that R is a normality relation on L# 

&Ba for each &e L, as for each ac L there was'a sub-

lattice A t€ Jt such that 0t = a, and so (MO) holds• (JDK1) 

follows directly from the definition of H9 

(112): Let alb and eld. According to the definition 

a * 0 and c = 0 for some indices ufseT# Further, a AC » 

= OgAO^ = a and 0 ^ M f i ^ ^ A ^ L for some peE", and 

thus the definition of R implies 0 Hb/^d* 

(BK3): Let aRb and ale, i.e* a.b.cgi^ for some te T* 

As A^ is a sublattice of L, bvcei^j and so albve* The 

proof of (DK4) is similar to that of (DK2), and CDK5) holds, 

as L is modular. 

2°: Let H be a given normality relation on L* le shall 

show that N generates a family & of convex aublattices of 

L having the same properties as Jt in the theorem* Let 

F * i j I xNy, y € L J for each x € L, and we denote $* * 

As xNx holds for each x e L9 there isf according to (HI), 

for each x 6 L a set Fx e 3* such that x is the least ele­

ment of F • As F is finite, there exists an element w = 

= V«C y \ ycF \ 9 and according to (BK3).. xNw. For each 

617 -



v e t x ,w3S L i t holds vNv. By applying (DK2) to xNw and vNv, 

we obtain xfv. Hence F x « tx,w3 , which i s a convex sublet-

t i ce of L, 

Let xly and zfv. According to (JK2), X A Z % A V , and on 

the other hand F € & * As X A Z ^ A T , then F A V . ^ 1 ^ ^ , 

and so (i) holds, ( i i ) follows similarly from (DK4), and 

(BK5) holds, as L i s modular, This completes the proof* 

The following corollary follows immediately from the 

proof above* 

Corollary. Let L be a f i n i t e l a t t i c e • Ea& family Jl 

of convex sublat t ices of L determines a generalized normali­

ty relat ion GI on L and conversely, GN determines such a f a ­

mily i f and only i f for any two indices s , ueT there exis t s 

an index p-s T such that ( i ) of Theorem 1 holds• 

In the following we loox for meets and joins of two ge­

neralized normality re lat ions (normality r e l a t i ons ) . The a s ­

sertion of t i e following lemma i s obviously va l id . 

.Lesma 1. Let L be a f i n i t e l a t t i c e and GN and GH two 

generalized normality re la t ions on L. The re la t ion K, where 

a&b «=*> *CaGSb and aGHb} i s a generalized normality r e l a t i on 

on L and K • GNAGB. 

Analogous lemma holds also for normality re la t ions . 

If Of i s a generalized normality re la t ion on a f i n i t e 

l a t t i c e L we denote the corresponding family of intervals of 

L by Jl (Gil), an interval of Jl (GM) with the least element 

x a L by A ^ . and the greatest element of Agjgx ^f ^Qilx* Ehe 

following theorem gives the most simple join of two genera­

l ized normality re la t ions . 
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Theorem 2 . Let GM and GN be two general ized normali ty 

r e l a t i o n s on a f i n i t e d i s t r i b u t i v e l a t t i c e L. The faai.% 

A (GH), where AGMx * I^AQ^ lQnxl , determines a genera ­

l i z e d no rmal i ty r e l a t i o n on L and GH = GMyGN i f and only i f 

( i ) L * L-.X I ^ x . . . x l ^ , where L^ i s a chain , i * l , . « » , n , 

or 

( i i ) L can be d iv ided i n t o two convex s u b l a t t i c e s L^ and 

L** such t h a t L * A L** con ta ins only one element, which i s 

0 of L* and 1 of I * * , L * * i s a chain and L* s a t i s f i e s 

the eontfit ion ( i ) above. 

Proof . 1 ° : Let L s a t i s f y ( i ) of the theorem; i t i s 

s u f f i c i e n t to show t h e -va l id i ty of (DK2) - the condit ions 

(1X0), (DK2) and (BK3) ho ld obvious ly . 

Let ®GHb and cGHd; we s h a l l show t h a t ^ A b ^ d ^ ^ y I Q ^ A 

A ( 1 G M C V > N c U l G M a A C v l G N a A C * A t first» b ^ aPP^»« ^ * 

distributive, V ^ l A d ^ v y m (3t}MaAlGMe)v 

v (1GNaA 1GNc) v (1GMaA 1GNc> v (1GNaA 1GMe)> w k e r e %Ma A 

AlGMc-1GMaAC a n d ^ N a * ^ N c - % a A C » a s m a n d G I a r e 

genera l ized no rmal i ty r e l a t i o n s on L. Ih the following w® 

consider the term l r jn a
A \$®Q a n d s 5 a o w ^ a t ** * 8 «ivial t o 

or l e s s than ^QW^QV 1GMaAC* t t t e P r o 0 ^ * s si&i-ter fo r 

XGMcA -̂GNa* 

As L » L 1 x . . . x l m , a * ( a i> a2»# # #» am^> c s ( cl»***>ca*> 

1GMa * t*!'*09'*®) and ^ N c * ^l*•••»*«*» wkere ai'ci»xi* 
yie L^. As aGMl G M a and <~G-*1QUC- we obtain (a-,, ...,&«;,... 

* • • t^ii ^**' a T » • • • >®:4«.T * ^ i * a i + l > * * * * a i i ®--d vCn, » * « ,CJ> , « «« 

. . . , c m ) G N ( c 1 , . . . , c i < - 1 , y i , c i # f l , . t , # , c m ) . Furthermore, as 1^ 

i s a cha in , a ^ c^ or c±&-&*t &*-d we assume tha t 
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a i £ e i , i , e o a i A C i » ®±f and X i A y . ^ i . l o B s always. Btat 

then ( a l f . •* ,aa)GM(a l f #®<i» » a i - l » ' x i » a i + i » • • * » a a ^ impl ies 

( a l f . . . » a i - l f a±A c i f a i + l f . . . , a ^ G M U ^ . . . . a ^ , x ± m m l $ ^ 7 ± $ 

ai+l»@**^am^# According to the p r o p e r t i e s (DK.O) and (DK2) 

of GMf we can now form t h e meet of both s i d e s wi th ( e l f . . . 

* * * * c i * p y i * @ i + l * * * * ' c a ' s a n i a w e o f e t a i 2 1 ^ a i A c i f M » a a A 

A C i g ) G M C a l A C l * » * ^ a s 
e i ^ y i * S o ? ^ n S e n e r a l s f o r each i f ( a ^ A c ^ . . . , ^ A 

A c^GTCa^, c l f . . . f a i r a l A e ^ x ^ y ^ a ^ A c ^ , . . . f a^A C j a ) f 

•shere Gf 5s GM or GN, i « l f # # . f a . Let z be t he j o i n of a l l 

elements ( a ^ c ^ M . ^ A C ^ ^ A y ^ a i + i A c i + l « • • • 

• • • J 6 ^ 0 : © * w ! l i c S l a r e ^ ^ e r e l a t i o n GH wi th ( a - j A c l f . . . 

• M ^ A C g ) f o r some value of i f and l e t t he corresponding 

jo in b® w in the case of GM;. these j o i n s e x i s t according t o 

(DK3)* As Gil and GN a r e gene ra l i zed normal i ty r e l a t i o n s and 

aAcGM* and aAcGfej w ~ ^GMBAC ^ ^ z~\jH&AC* a n f i t r i T : i a 1 " " 

l y t w v z « C x 1 A y l s . ^ f x a A y a ) * lGMefc
A ^ N c * * * * * * * * * 

^ 1 GMSAC V %MajAC# A s m e n t i o a e ^ abo¥e s we can s imi l a r ly , see 

t b a t % l c A ^ l a - % t a A e v ^ I S A C * 
Aa each term of the j o i n ( l G | f e A l G M c ) v ( I Q ^ A ^ ^ ) V 

v ( 1 G M a A l G I c ) y ( 1 G I c A W i s l e s s o r e q u a l t 0 

1 G M B A C V ^GMaAe' t f e e ^ o i B s a t i s f i e s t h i s r e l a t i o n as w e l l . 

Hence C l ^ v lG | f e) A ( I ^ A 1 ^ ) .4 I r j ^ ^ v 3 ^ ^ . 

The proof for t h e l a t t i c e L s a t i s f y i n g ( i i ) i s a r e p e ­

t i t i o n of the proof above, and henee we w i l l omit i t . For* 

completing the proof of n e c e s s i t y we must show t h a t GH * 

ss GMvGN. Let GK> GMf..«, and so fo r each X€ Lf xGKlGMx and 

xGKlg^ . According t o ( D O ) , x G K d ^ ^ v l ^ ^ t whence GK£ GH, 
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and thus CHI * GMvGN. 

2°: Let GH be the join of relations SM and Gff on L, 

aB<i AGHx * ^x,3taixv ĜHx"̂  * ̂ ^ u s r e m o v e f r o a ^ e Hasse 

diagram of L all the points and the lines incident to those 

points, which are meet-reducible in L. Remove further the 

chain CQ containing the zero element of L, if such a chain 

exists. If the diagram graph thus obtained is empty, L was 

the chain CQ, and the theorem holds. If not, let us consi­

der the graph D obtained. If it is a tree, where the degree 

of point 1 only can be 3 or greater 9 then there is nothing 

to prove: the chains of this tree are the factors L-,.**,,!^ 

in (i), as the elements of a finite distributive lattice can 

be uniquely represented as meets of meet-irreducibles. 

Assume that D is a tree and there is a point a=jfcl with 

the degree at least 3. Then there are in D two points x and 

y which are meet-irredueible in L. Let us consider the sub-

lattice of elements -txAy,x,y,a,z J of L, where z€D, and 

a<q< z holds for no q e L (e.g. a~<z); such an element z 

exists in L as 3) is a tree ani a -£ 1 (see Fig. 1(a)). We de­

fine V 

?z zft \ a 

x л y XAy uAy 

(a) (b) (c) 

Figure 1 
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a generalized normality relation GM as follows: BGMs <*==*> 

<=> r « s or 3 q e L such that r * yAq and s.=VzAqj ob­

viously GM is a generalized normality relation on L. We 

define another relation FN analogously: tGNu<=> t s u or 

3 peL such that t - P A X and U ^ Z A P . One can easily 

see that txAy,lGMxA vl^jj 3 * [xAy,aJ , but it holds 

for each GK>GM,GN that xGKz and yGKz, whence XAyGKZ, as 

well. But z$ ExAy,<aJ 9 which is a. contradiction. So in 

the tree D only the point 1 can have degree 3 or greater. 

Assume that D is unconnected graph. Let x be the point 

of D such that x-#l, but all the points h-̂ ,... h^ which 

are joined by a line to x in D are less than x in L, As the 

chain CQ has been removed, there are in L also elements 

that are less than x. On the other hand, as x-£l, there is 

also a meet-reducible element a in L satisfying x—<a, and 

let the shortest meet-representation of a in terms of meet-

irreducibles contain an element z« L.As the chain CQ has been 

removed, there is in L an element y such that yvx * a, or 

there are two non-comparable elements u ,y .£x such that x * 

s mvy (see Figures Kb) and 1(c)). 

In the case of Figure 1(b) we define two generalized 

normality relations <B4 and GH as in the case above. There 

are not two non-comparable elements b£ x and c£y such that 

bvc « z and bAe » xAy, as in the other case bAa « x, be­

cause bA c * xAy, a>~x, aBiy and c2:y# Hence % 4 txAy, 

*(SIXAVV " W X A v-̂  * an<^ w e ^et tJte des^red contradiction. 

In the case of Figure 1(c), the relations GM and GN 

can be defined as follows: rGMs 4==-> r = s or 3 P £ L such 
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that U A P * r and a A p > s , and tG.tfv«=£ t - v or 3 f e - l 

such that f A y s t and f A a > v . The assumption i n the case 

of Figure 1 ( c ) says that there are not two non-comparable 

elements b > u and c;>y such that b v e = a and feAC s UAy, 

as i n the other case bv x » a or e v x = a- Hence a ^ C t i A y , 

"^GMUATv "^GNUAV ^ • S o ^ must be a connected t r ee , where only 

the point 1 can have the degree 3 or greater. This comple­

t e s the proof. 

The fo l lowing lemma g ives a join construction for gene­

r a l i z e d normality re la t ions in the general case. 

Lemma 2 . Let GM and GN be two generalized normality 

r e l a t i o n s on a f i n i t e l a t t i c e L. Then the family A (GH) * 

* * C a ' W v 3 G ! t e v U a 3 I * * L i f * • * • \ « ^^1(BI3cvlGHxv 

v Ux) A (^QMtrVlQUyvXJy) I Sa i s the s e t of a l l pairs x f y £ L 

for which XA y « a } % generates a generalized normality r e ­

l a t i o n OS on L and GH * GMvGH. 

Proof. As Ug^g contains at l e a s t the term (--QjjaV *Q{fa
v 

v U a ) A ( 1 G M c v l G N c v X J c ) » t h e n b A f l € C a A ^ 1 G l f i a A e v l G N A A C V 

vtJ a A C3 and (BK2) holds for aGHb and c(Bd. Tke other condi­

t i o n s hold obviously. 

Let GP be a generalized normality re la t ion on L such 

that GP>GMrGH. Then XG^IQI^ a*-d XGPIQ-^ for each x e Lf and 

so xGPClgj^v --^|fx)» as w e l l . According to the property (DK2) 

and to the f i n i t e n e s s of L, a l so xGFu*x. Hence XGP(1Q~ v 

v 1QUXV U X ) for each x c L, and thus GP>GH. Consequently, 

GH * GMv GN, and the lemma fo l lows . 

The fol lowing lemma gives a construction for the jo in 

of normality re la t ions analogous to the r e s u l t s in .Theorem 

2 . 
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Lemma 3> Let M and H fe© two normality relations on a 

f inite distributive lat t ice L. The family A (H) ^-iLai-t^v 

v W V l i ^ h wnerew a » ^ * Q ^ v ^ h d ^ V 

V3JJX ) A . . . A (Iny V l|u* ) l S i s the set of a l l sequences 

x-t, . . . ,*^ for which a * x-jv XgV . . . v x tn2-2 \ , generates 

a normality relation H on L and H s HvM, i f L * L-x l^x 

X M . X J ^ , where 1^ i s a chain for each value of i - 1 , . . . 

• « . } M . 

Proof. Let us consider f i r s t the condition (DK4). Let 

aflb and cHdj we must show that a v e v ( U t ! ) ^ a v e v { ( 1jfev 

Y W A ( W V i 6 £ * v e W v e v W c v W * v c 3 -
By applying the distrifeutivity we see that t-t^v ljj f tvfa)A 

A (1lfcv %cv V ^ {1Mav %a)A ( 1Hev W * v < \ A « n c v 

v l H c ) } v i We A ( 3 ^ v 2 ^ 1 v i f f t A f c 5 . 4 Wayc according to 

the definition of W • As aw ©~2jiavev %ave> t i l e aa®61*"^011 

follows by combining these two observations. 

(DKO)f (Ml) and (DK3) hold obviously, and so we shall 

consider the condition (D&2) only. Let aHb and cHd. The re­

lation H satisf ies (J3K2), i f bAd^C-l^v ^ v ^ , ) A (l^ v 

v 3 H e v W c > € CaAC»1MaAev %aAevWaAc:i • A s a b o v e » w* e o n s i " 
der the t e r a ^ d ^ v y ^ ^ v y N - t ^ A ^ W h*^* 

v < l e A , 1 « v W } v (Vfol • (V W A , V V 
vw ) . Similarly as in the proof of Theorem 1, we can show 

that 

(1> < W W A < 1 M c v W * W « V W e * 

As » A C » (ijA c ) v ( J ^ A C ) v #.• vdt^A^) for each sequence 
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XpXg, . . . ,*^ witk tke property x ] lv • • • v x a » a, W ^ > 

^ ^ A C ^ X ^ C ^ - - ^ ^ 

A (1Mcv W ? A i (1Mx/ 1Nx2
) A t l H« v W * A •••A«<%2 iv 

V l ^ A ( l ^ V % c ) ? » - K ^ V 3 ^ ) A . . . A (Ijfc^V i j -^) J A 

A ( 2 Me v ^ e ' * ^ f o r m i n £ t 3ae J o i n ot a 1 1 terms -f ( I j ^ v 1^^ )A 

A . . . A d j ^ v IJJ ) i A <-%evl.j|C)f where x x v M . V S ^ » a, 

we otetain tke term WfiA ( l ^ v Igj*)* and as each member of 

tke join was less or eqnal to W^^, tken 

(2) WV3*'* 
Similarly we see that 
(3) Ve«cA(VW-
Consider f inally tke term ^aAirc# Let a * x-^v . . • v x a and 

c = y-^v . . . vy a» t k e n a A c » (x-jAy-^v CxgAy-̂ ) v . . . 

v (X^A y-̂ ) v (x-^A y^) v (xg A y2) v . • . v (X^A y2) v (X-^A y^) v 

v ... v (-^Ayffi)- According to tke definition of W 2r; 

- ( 3 * v y i v 1 ^i A y i ) A (1fe2
Ayiv ^ ^ i * * • • • A ( a ^ A y a

v 

v l j - u . - ) . On tke otker hand, 

(I^3Ayiv ^ i W " ilmci ^xiA c VLV \i> 

(1Mx2Ay1
v %x2Ay1

) - (W>V h*^ A ( V i V 1%i ) ' 

( 1HVyiv V l ' " ( lM-nV ^-n 5 A ( V x
v V ^ » 

« 
. 
ll**d*» ****** ~ (3 , faBV ^ A (Va

V V J ' 
and by forming tke meets of botk sides and by ordering tke 
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terms in the r i^h t s ide , we see tha t ^^^^ ^hix AV V 

VVtW A "* A ( 3 * V * » V lKxnA3rm) " ( 1 | & 1 V 1 | l x l ) A 

M%Mx^ %X 2
) A ••• A ( 1 ^ V %^ ) A lh*f V , A ( 1 ^ 2 V 

vl%2
)A •" A(Va

V" V a
K . 

% forming the join over a l l pa i rs t x p • • •-.st^) and (y«^»«* 

• o . , j ) 9 where x^v • • • V X L S a and y-gV . . • v y 1
 s cf we see 

that 

"> V c * * a A V 
By-combining now the results (1),(2),(3) and (4) obtained 

above., we see that Cl-̂ v l^v Wft) A (%CV -%CV W0) .4 ( ^ v 

v%aAcv WaACK 0 * * * * * * a A c * < W % a v Wa ) A C3Hcv %c v 

vW ) , and the assert ion follows* So H sa t i s f i e s also (BK2), 

and hence H i s a normality r e l a t ion on L* 

Let K tee a normality r e l a t ion on L such that K2rN̂ J-U 

According to (DK3)S x K i ^ v l ^ ) for each xe L, and accord­

ing to (DK4) and (DK3)f 3cK(xv • ) for each x€ L* Ety apply­

ing 0MS3) once again t we see tha t .sK(l^xv l ^ v l ^ ) for each 

x€ Ls and hence K>H, Thus H * Hvlf, and the lemma follows. 

Now we can prove a theorem on the d i s t r ibu t iv i ty of 

the l a t t i c e GN(L)* 

Theorem 3* The l a t t i c e GN(L) of a l l generalized nor­

mality relations on a f i n i t e l a t t i c e i s d is t r ibut ive i f and 

onty i f L i s dis tr ibut ive and GH * GNvGM i s determined by 

the family A (GH) » 4 C atf l ^ v l&fal \ X e L ? . 

Proof*. Let L be a f i n i t e d i s t r ibu t ive l a t t i c e s a t i s ­

fying the condition of the theorem, and GK,GN and GM three 

generalized normality relat ions on L« I t is sufficient to 

show that GKA(GNVGM) £<GKACBOV (GKAGM) , from which the 
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d i s t r i b u t i v i t y of GN(L) f o l l o w s . Let a 4GK/\ (GNvGJI)l b<=> 

<$-===> aGKb and a(GNvGM)b* Furthermore, a(GNv GM)b ===» b € 
e l a>1GNav hm1 , and so b = b A ( l ^ v l ^ ) . C b A l ^ W 
v f f e A 2 GI8a ) * ^ i ^ i a l l y , a(GKAGN)(bv : % a ) and a(GKA GM)(bv 

v l g j ^ ) - which imply according to (DO) t h a t &-}(GKAG!I ) V 

V ( G K A G N ) | b . Thus G K A ( G N V G M ) « (GKAGN) v (GK AGM)* 

In the converse p a r t we s h a l l f i r s t show t h a t L i s n e ­

c e s s a r i l y d i s t r i b u t i v e . I f L i s n o n - d i s t r i b u t i v e , i t con­

t a i n s as a sub l e t t i c e a t l e a s t one of the l a t t i c e s L# and 

L" of Figure 2* Consider f i r s t the case of s u b l a t t i c e L\ 

yfsf ^ q ^ As L i s f i n i t e , we can 

a <C ^vy° c I y*e -construct f ive noram-

\ / hr~^~^/ l i t y r e l a t i o n s sueh 
\ K q q 

that, the only n o n t r i -
L ' L " rUl i » t a r - 1 i n 

t&e family A gene ra t ­

ing the r e l a t i o n s i s Cofe.3 f CO t a] , LO,bl , tOf©3 or Co f e ] ; 

we denote the corresponding r e l a t i o n s by G CO fq] fG CO,a] , 

G r o , b l , G CO, e l and G CO,e l • Clear ly these r e l a t i o n s form 

a n o n - d i s t r i b u t i T e s u b l a t t i c e of the l a t t i c e GN(L) as V^^q. 

Simi la r ly we s e e t h a t the l a t t i c e GN(L) of a l a t t i c e L con­

t a i n i n g L" as s u b l a t t i c e , conta ins a non-d i s t r ibu t iTe subla­

t t i c e . Hence L i s d i s t r i b u t i v e . 

I f the j o i n GH » GNvGM cannot be generated by the f a ­

mily A (GH) » i t X j l g j ^ v 1WX 2 \ x e L ? , we obtain the ca ­

ses of the proof of Theorem 2 given in Figure 1 . In the cases 

of Figure 1(a) and 1 ( b ) , we def ine GK as fo l lows : sGKu <**-> 

4asas> s = u or 3 t e L such t h a t t A(xAy) s s and t A z .£u# 
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As L is distributive, GK is a generalized normality rela­

tion on L; ON and GM are defined similarly as in the proof 

of Theorem 2. S® (X A J ) 4 ® £ A (GM vGM)f z. According to the 

definition of GKt for each i>xAy 9 -Vrw ~ I^s^l t S-&& hen­

ce 0 ^ * XAy for (GKAGM) V ( G K A G H ) . On the other hand, 

the proof of Theorem 2 shows that there are not in L two 

non-eomparafcle elements h£x and e>y such that fevc * s 

and © A C » XAy, whence the relation (xAy) -C(GKAGM) V 

V ( G K A G K ) | Z does not hold. The proof is similar in the 

ease of Figure 1(c). This completes the proof. 

3. On dir ec t deeompos it ions . At first we prove a 

theorem on direct decompositions by means of generalized 

normality relations. 

Theorem A. Let L he a finite lattice such that L * 

« Lj[xl^x..,xl^, where l£ is a chain. L has a direct de­

eompos ii ion if and only if there are two nontrivial gene­

ralized normality relations GM, GKeGH(L) such that 

G S A G K = 0 «ni OSvGK » 1 in GM(L). 

Proof. 1°: Let L * L^ I ^ . We define two relations as 

follows: aGMh«=-> a » (x-]>9x2)f b « (xlfy2) **& ̂ ^ ^ i 

cGKd <-=-==> c » tz^f%9^9 fl * ^wl,z2^ a n d zl^ wl # J t *a a n e x e 2 V 

cise to show that GM and GK are generalized normality rela­

tions on L; we shall only show that GM and GK are comple­

ments in GK(L). Let t . 4 u in L, where u - tapU^) ^^ * * 
s ^1*^2^• ^ e n (^i^J^Cu^itg) and (ultm2)GK(tltU2)« Fur­

thermore, (tI>m2)v (u^tg)
 s (ttjV t^iigV t2) * ^11*2 )t

 asad 

so the relations above imply a(GKvGM)t. Hence GMvGK c 1. 

If h(GMAGK)f, then according ta the definition of GMt 
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h x - fx in h * ( h l f h 2 ) and f = ( * l f f 2 ) . Similarly GK imp­

l i e s that h 2 « f2s whence ( h l f h 2 ) a fcflf:f2)
 s h « f• !Ehns 

GKAGM * 0 . 

2 ° . Let GMAGK * 0 and GMvGK * 1 in GF(L). We sha l l 

show that L * tO,lQml x C O , ! ^ ^ * Each join-irredueitele 

element of L belongs to one of the s e t s C0 f lG K 03 f t O , ! . ^ ^ • 

Indeed, assume that x i s join-irreducible and x ^ t 0,2^-^3 * 

[ 0 f l G M 0 3 . Then x 6 C 0 , 1 . ^ V I ^ Q 3 f as GMvGK - i # So 

* * < W W * ^ W V ( X A W » from which i t f o l ­

lows that x i s join-reducible f or 1^-^ • 0 f or lmo * 0S 

and x 6 [ 0 , 1 ^ 3 f or x £ L 0 f l G K D 3 , respect ively; a contra­

d i c t i on i n each case* Furthermore, GMAGK - 0 f and so 

I 0 ,1 G M 0 3 n C 0 , 1 ^ 3 * 4 0 J . As L i s f i n i t e and dis tr ibu­

t i v e , for each z c Lf 25 i s the j o i n of suitable join-irredu-

c i b l e s , i . e . z = ( V i ( q ^ K ) i ) v ( V j C p J ^ j ) , where ( q g - ^ i s 

a join- irreducible of C O^^l *®& (%f*j a jo in- irredu­

c ib le of [ 0 ,1 ,3^3 • Clearly V ^ q ^ -= ^ K £ t®f\m 1 

**<* V j C p ^ j = VZ
m e r o f l G M 0 3 • We map s onto ( ^ p ^ K 

According to the uniqueness of the joinrepresentation by 

means of jo in- irreducibles in a d is tr ibut ive l a t t i c e , the 

mapping i s a. l a t t i c e morphism. I f 2 has the f igures 

( q G K , p ^ ) and (QGK>PGB-P* t h e n t a e u n i c l u e n e 8 S o f t S l e J0**-**-

presentat ion implies that pGM « pGM and c^K * QZQK» s i--- i lar-

ly we see that each element of 10,1^^3 x C 0»3QU 0 3 has an 

image in L, and hence L * ^^J^TJKO^ K ** 0,1GlftO^ * ^n^,s ComP3-e* 

tea the proof* 

As i n the case o f the preceding theorem GN(L) i s d i s ­

t r ibut ive f one can prove the following generalization by an 
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analogous way. 

Corollary. Let L be a f ini te l a t t i c e , L = L T X . . . 

. . . x l £ , where L-f,•••,!£ aire chains• L has a direct decom­

position with n factors i f and only ±f there are n nontri-

vial generalized normality relations GM«g,GM2,•«• ,GM̂  such 

that GM^AGMJ « 0 for each pair 3c, j , k # j , and GM̂ vGM̂  v 

V...VGMJJ * 1 in GN(L). 

The following theorem gives the corresponding result 

in the case of normality relations. 

Theorem 5. Let L he a f in i te l a t t i ce such that L * 

* I*£x. .*xl^, where L £ , . . . , I ^ are chains. L has a direct 

decomposition i f and only i f there are two nontrivial norma­

l i ty relations g,M6H(L) such that KAM = 0 and KvM= 1 in 

H(L)» 

Proof. 1°; Let L * 1*1* *£• We define K and M similarly 

as the generalized normality relations of Theorem 4: aKb<=» 

<$-==> a a (a-^ag), h s ^ai»^2' axi^L ®2~ *2? eM&^^c * 

* ^el ,e2*> * s (*l»*2* aB^ c l ^ ^ l # We s l i a 1 1 8l l0W t h a t £-**) 

holds for Kj the proof i s similar for M. Let aKb and fKh. 

Then a v f * (®-jV f^a^y f 2 ) a3aa -*A* * (a-jA f-^fc^Ahg). 

Fwrther, avfv(hAfc) * (a-,v f^v (»xA:fl*» agVfgVlhg.A 

A Kg)) * (a^v f - j ^ v f ^ v (h^Alig))* The f i r s t components 

of a v f and avfv(hAfc) are the same and ^ v f ^ a ^ v f g v 

vfbgAhg), whence ( a v f W a v f v(hAfc)). The other condi­

tions hold obviously, and hence K and M are normality re­

lations. The latter part of 1° i s a repetition of 1° in 

the proof of Theorem 4, and hence we omit i t . 

2°: We shall show that the construction of the proof 
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2° of Theorem 4 holds. We must only show that each j o i n - i r ­

reducible element x of L belongs to [Q.-I^QI or to t O , ! ^ ] ; 

in fact , we show that I ^ V I J J Q * 1 in L. Let us consider the 

normality re la t ion KvM. A g ^ * t O j l ^ v l ^ v Ŵ  } , and as 

the only join-expression for 0 i s 0 = OvO, 1^ * (Ig-Q v 

thermore, as KvM » 1 in N(L)9 then iW MQ * L, and henee 

lKQv IJJQ -= 1 i n L. The r e s t i s a repeti t ion of the proof 2° 

in Theorem 4 . 

As we haTe not shown the dis t r ibnt iv i ty of N(L), the co­

rollary of Theorem 4 need not hold in the case of normality 

re la t ions . 
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