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K~ESSENTTAL SUBGROUPS OF ABELIAN GROUPS . I

Jind¥ich BEEVAR, Praha

Abstract: The purpose of this paper is to investigate
K~essential subgroups of abelian groups amd to generalize
some known results about essential subgroups. In the sectiom
1 there are presented some fundamental properties of the K-
essential subgroups. In the section 2 there are given the ne-
cessary and sufficient conditions for the existence of a (ma-
ximal) K-essential extension. The section 3 investigates sets
of K-essential subgroups, where K runs through the subgroups
of a group G. .
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0. Introduction. All groups considered here are abeli-
an, Concerning the terminology and notation, we refer to (11
and [2]. Otherwise, if G is a group then G, and Gp are the
torsion part and p-component of Gt respectively.

We shall frequently use the following notation:
® - group of rationals, '
Z - group of integers, infinite cydliec group,
Z. (n) - cyclic group of order n,
N=fneZ ; n>0%,
P - the set of all prime numbers,
(n,m) - the greatest common divisor of n and m,

hg(g) - the p~height of g in G.
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Iet KXc N be subgroups of a group G. Following Krivonos
[3], a subgroup A of G is said to be N-K-high in G if A is

maximal with respect to the property AnN = K,

1. K-essential subproups

Definition 1l.l, Let G be a group and K a subgroup of G,
A subgroup N of G is said to be K-essential in G if for eve-
ry g€ G\K there is n €« N such that nge N\ K,

Remark 1,2, O-essential subgroups of a group G are ex-
actly the essential subgroups of G and every subgroup of G is
G-essential in G, If K is a proper subgroup of G then no sub-
group 6: K is K-essential in C. The group G is K-essential in
G for every subgroup K of G. If K ies a proper subgroup of &
mixed' group G then no torsion subgroup of G is K-essential in
G.

The proof of the following proposition is straightfor-
ward and hence omitted.

Proposition 1.3, let N and K be subgroups of a group G.
Then the following are equivalent:

(i) N is K-essential in G;

(ii) K is the unique N - Nn K-high subgroup of G;

(ii$) if o : G—>4A is a homomorphism and Ker(*| N)cK then
Kere c K;

(iv) if X is a subgroup of G and X¢K then XnN#K;

(v) if H is a subgroup of G then NnH is K~ H-essential in H;
{vi) if ge G then NN{g) is Kn {g) -essential in <g);
(vii) if L is a subgroup of K then L/ 36 X/1-essential in
/1.



If N is a K-essential subgroup of a group G and A is a
subgroup of G with AnK = O then AnN is essential in A by
1.3 (v).

If K and N are subgroups of a group G then K is N - Hn
A K-high in G iff N + K is K-essential in G.

Proposition 1.4, The family of all K-essential subgroups
of a group G is a filter.

Proof, If N is a K-essential subgroup of G and M a sub-
group of G containing N then M is K-essential in G. If N and

M are K-essential subgroups of G then NnM is K-essential in G,

Proposition 1.5, ILet G be a group. Then

(i) It Nis & Ki-ensential subgroup of G for every ie I then
N is N K;-essential in G.

(ii) £ N is & Ki-easentie.l subgroup of G for every ie I, whé-
re {K;; ieI} is a chain of subgroups of G, then N is Uk~
essential in G. )

(iii) If N is a K-essential subgroup of H, where H is a K-es-
sential subgroup of G, then N is K-essential in G.

Proof. (i) If geG\ nxi then there is an element je I
such that g€ G\K;, Now, there isneN with nge N\ k; and
hence ngeN\ N K.

(ii) Iet ge G\ UK. For every ie I there is n; e N such
that n;ge N\K,. If {g> N N = {(ng? then obviously ng €

eN\Ki for every iel.
(iii) If ge G\K then there isne N such that nge H\K.

Further, there-is me N  with mnge N\X,

Remark 1.6. ILet I(1 and N; be subgroups of a group G, ie I,
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If ® N, is @ K;-essential in @ G; then N; is K, -essential
in Gi for every ie I. Obviously, the same applies to -direct

products.

Proposition 1.7. Let Igc Ni be subgroups of a group G;,
ieI. Then @N; is @K--essentiai in @G iff N; is K;-es-
sential in G. for every i€ I,

Proof. Let ge® G;~ ® K;j i.e. g = S 813, where

g; € G; for every j =1,...,m, melN and there is an inte-
J
ger k, 14 k<nm, such that glke le i Since Ni is I(:L -es=-
sential in G; , there is ne N such that ngl € N; \ Ki I
1k
ng € ®N; then we are through, since obviously ng ¢®Ki. It
ng & @ N; then there is an element r e N , 14£r£m such

that ng; € Gi\ K; and so on. The converse follows from 1l.6.
by by

If G is a group and K is a torsion subgroup of G, then
the torsion parts of all the K-essential subgroups of G are
K-essential in Gt by 1.3. The following proposition implies
that all the K-~essential subgroups in Gt can be obtained in
this very way.

Proposition 1.8, If K is a torsiom subgroup of a group
G nd L is a K-essential subgroup of Gt then every Gt-L-hish
subgroup of G is K-essential in G.-

Proof, Let N be a Gt-L—high subgroup of G and ge G\ K u
UN, If gth then there is n € N such that ngs L\ Kc N\K,
If g¢G, then (g,N> T L; there are k ¢ N , meHN and te
€ C't\ L such that kg + m = t. Now, o‘(t)kgﬁN\K.-

Proposition 1.9, Iet N be a K-essential subgroup of a
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group G and A be a subgroup of G. Then A is N-high in G iff
A id En K-high in K,

Proof, If A is N-high in G then A is a subgroup of K by
1.1.

' Proposition 1,10, Let k, n be nomnegative integers. Then
the subgroup nZ is k Z -essertial in Z iff hf (k)2 1 im-
plies hZ (m)<nZ (1),

Proof. The assertion is obviously for k = O. Suppose

keN .

Let nZ be kZ -essential in Z and k = pr, where p €

€eP @andreN . Obviously r¢kZ ; consequently there is

meN such that menZ \ xZ . Hence n|mr and (p,m) = 1.
£ p*l n then p*l r and pi"'ll k.

Conversely; let x¢ékZ . Now, there are peP and i€
e N such that hg (k) = i and h? (x)< i. We can write x

= ya, n = yb, where (a,b) = 1. Obviously bx = enenZ . If
bxekZ then p-| bx. Hence p|b and (p,a) = 1. Consequently,
p*| n ena p**1| k, a contradiction. Hence bxe nZ\ kZ .

2. Maximal K-essential extensions

Definition 2.1. ILet N and K be subgroups of a group G.
The group G is said to be a K-essential extersion of .N, if

N ig K-essential in G. The group G is said to be a maximal
K-essential extension of N, if N is K-essential in G and is
not K-essential in a giroup H, whenever G is a proper subgroup
of H. ‘

Let G be a maximal K-essential extension of a group N,
Then G is a maximal K-essential extension of a subgroup M of
N iff M is Kn N-essential in N,
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Theorem 2.2. let N and K be subgroups of a group A.
Then the following are equivalent: '
(i) There exists a K-essential extension of N;

(ii) There exists a maximal K-essential extension of N
(iii) N is K-essential in N + K;

(iv) Either ¥/KAN is a torsion group and &xn ll)p+0 im-
plies (‘/xnn)p = Q or NcK.

Proof. (i)==> (iii). If G is a K-essential extemsion
of the group N then N is K-essential in N + K by 1.3 (v).

(iii)==) (ii). ILet D be a divisible group containing
A and 97 be the set of all K-essential extensioms of N,
that are contained in the group D. It is N + K € %t by (iii),
% is partially ordered aml inductive. By Zorn's lemma, the-
re is a maximal element G in 7L . Suppose N is K-essentisl
in a group H, where Gc H. Now, there exists & homomorphism
f: B—> D extending the natural inclusion G into D, Conse-
quently, Ker | §) = 0cK and by 1.3 (iii), Ker fc K; hence
f is a monomorphism. If ge £(E)\ K then :l"l(g)e HN\K and the-
re is ne N such that nf-l(g)s N\K, i.e. nge N\ K, Conse-
quently, the group f(H) is & K-essential extension of N and
Gc£(H)c D. Hence G = H,

(ii) = (i), Trivial,

(iii)e=>(iv). If meN, keKandneN then
m+ keN + K\K iff mgKnK-
o .
mm + nke N\K iff mm¢KnN and nke KnN,

Moreover, if me N\KnN and ke KnN then m + ke N\ K

(in this case n =1). Hermce, the assertion (iii) is equiva-

- 486 -



lent to the assertion
(v) if me N\KAN and k€ K\ Kn N then there is ne N
such that me¢Kn ¥ and nke Kn N, '
(iv) =) (v). Suppose meé N\KN N and ke KN\Kn N, Let
n be the least nonzero natural number such that nkeKnN,
Such number exists, since K/knN is a tofsion_ group by (iv).
Ifn=pr,where peP amreN , thenrk + KnN is a
nonzero element of the group (K/Kn N)p. For each prime p
with pln (N/KnN)p = 0 by (iv). Hence nm¢Kn N.
(v)=(iv). If N is not a subgroup of K, i.e.
B2 KnN, then K/KnN is a torsion group by (v). If
&xn N)p#o and (%/Kn N)p#o for some prime p then there
are elements k€ K\NKnN aml me N\KnN- such that pk, pm &
€KnN, By (v), there ie ne N such that nm¢KnN and nk €
€ KnN, Now, (p,n) = 1 and there are integers u, v such that

up + von = 1. Hence k = upk + vnke Kn N, a contradiction.

Proposition 2,3, Let N and K be subgroups of a group
G and there exists a K-essential extension of the group N,
Then
(i) There exiats a subgroup of & that is maximal with res-
pect to the property of being a K-essential extension of N
im G;
(ii) The group G is a K-essential extension of N iff G/K
is an essential extension of the group N+K/K;
(iif) The group G is a maximal K-essential extension of N
ief G/K is a divisible hull of the group N'K/K;
(iv) £ %/ is @ divisible group then G contains a maximal

K~-essential extension of the group N.
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Proof. (1) Let %% be the set of all K-essential ex-
tensions of the group N that are contained in G. By 2.2, the
group N + K is an element of %L . The set %3¢ is partially
ordered and inductive. By Zorn’s lemme there is a maximal
element in 2% .

(ii) Supposé that the group G/k is an essential exten-
sion of the group g, 12 g6 G\ K then there is n € N
such that ng = m + k, where me N\ K and ke K. Let r be the
order of the element k + KaN., By 2.2, r is finite and rm ¢
€ K. Hence rnge N\ K. The converse follows from 1.3 (vii).

(iii) It follows immediately from (ii).

(iv) The group G/k contains a divisible hull /K of
the group N"'K/K and hence D is a maximal K-essential exten-

sion of N by (iii).

If G is a. maximal K-essential extension of N then G is
an extensionm of K by a divisible hull of the group MK k.

Corollary 2.4, let K and N be subgroups of a gooup G.
Then
(i) If NcX then K is the unique maxi mal K-essential exten-
sion of N;
(ii) If KcN then there is a maximal K-essential extension
of N. The group G is a maximal K-essential extension of N
ite ®/K is a divieible hull of V/K;
(iii) If KnN = 0 and N is ronzero then there exists & ma-
ximal K~essential extension of N iff K is torsion emd Kp+0
implies N, = O, If it holds then G is a maximal K-essential

P
extension of N iff O/K is a divisible hull of KQK/IC.
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Remark 2.5, The existemce-assumption of K-essential

extension of N in 2,3 camnnot be omitted as it is seem from
the following example: Suppose G = N ® K, where N & @ and
kEZ . Then the group ¥ +K/K is essential in G/K and G/K
is divisible. But N is not a K-essential subgroup of G.

Remark 2.6, Im [41, T. Szele investigates the algebraic
elements with respect to a given subgroup and problem of al-
gebraic extensions of groups. It is closély related to the
problem of K-essential subgroups as it follows.

Let N and K be subgroups of a group G. An elemet g of G
is said to be K-algebraic over N if geK ar <{g>N EnK =+
#{g>n N, If every g€ G is K-algebraic over N, we call G
K-algebraic over N, In this case the group G is also said to
be K-algebraic extension of N. Now, it is easy to see that G
is K-algebraic over N iff N is K-essential in G. Hence, K-es-
sential extensions of N and K-algebraic extensions of N are

the same,

3. Comparing K-essential subgroups
Iemma 3.1, Let G be a group and N a subgroup of G such
that &/N is a torsion group. Let K be a subgroup of G such

that if (G/N)pqso then G c K and K is p-pure in G. Then N is

K-essential in G.

Proof, let geG\K, If n = ¢ (g + N) then nge N, More~
over, ng¢ K. For, if nge K then there is ke K such that ng =
= pnk. Now, n(g - k) = o and consequently g - ke K. Hence g€K

implies a contradiction.
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Iemma 3.2, Iet G be a group. If K is a proper subgroup
and N is a K-essential subgroup of G then G/N is a torsion
group~

Proof. Suppose g + NEG/N. If g¢K then there exists
n e N such that nge N\K. If geK then by 2.2 either NcKk
(hepce X = G, a contradiction) or K/kaN is a torsion group.

Consequently, there is m e N such that mge N .

Theorem 3.3. let G be a group with subgroups K and N,
Then
(i) N is G,-essential in G iff G/x is torsion;

(ii) If K is proper and N is K-essential in G then N is
G,-essential in G;

(iii) If G is not torsion then the set of all K-essential
subgroups of G end the set of all Gt-eseential subgroups of
G are identical iff K is proper pure containing G ;

(iv) If K is proper then each K-essential subgroup of G is
K,~essential in G;

(v) If K is proper anl torsion-free then each K-essential
subgroup of G is essential in G.

Proof. (i) Let N be G,-essential in G. If G = G,,
then G/N is torsion. If G#Gt then G/lfl is torsion by 3.2.
Conversely, if G/N is a torsion group then K is & Gt-essen-
tial subgroup of G by 3.1,

(ii) It follows immediately from 3.2 and (i).

(iif) Let K be a proper pure subgroup of G containing
Gyo If N is G ~essential in G then C/m is & torsion group by
(i) end N is K-essential in G by 3.1. The converse follows
from (ii).
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Suppose that the set of all Gt-essential gubgroups of
G and the set of all K-essential subgroups of G are identi-
cal, If Gt is not a subgroup of K then each Gt-high subgroup
of G is Gt-essential in G and not K-essential in G. Next, we
suppose that K contains Gt and K is not pure in G. There ex-~
ists ge G\ K such that <é>n K=<kxg? , wvhere k e N .
Iet N be a subgroup* maximal with respect to the properties:
¥, =0, Nn<lg) =< kg? . Obvioudly, N is not K-essential
in G. If xeG\ G UN then either {x,N}>,40 or <{(x,H)>nNn
Nn<gY3F <kg> . In the first case there are ne N - , heN
and t€ G, such that nx + h = t; hence o (t)nxeN\G;. In the
second case there are mme N and he N such that nx + h =
= mg., Now, kmg = knx + kh, i.e. knxe N\Gt. Consequently N
is Gy ~-essential in G, a contradiction. Hence K is a pure sub-
group of G containing Gt, K is proper simce G is not torsion.
(iv) If N is a K-essential subgroup of G then N is
G -essential in G by (ii) and N is K -essential in G by 1.5.

(v) It follows from (iv).
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