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COMMENT.ATIOHES MATHEMATICAE UNIVERSITATIS CAROLINAE 

17,3 (1976) 

K-ESSENTIAL SUBGROUPS OP ABELIAN GROUPS . I 

Jindřich BEČVÁfi, Praha. 

Abstracts The purpose of this paper is to investigate 
K«-essential subgroups of abelian groups and to generalize 
some known results about essential subgroups. In the section 
1 there are presented some fundamental properties of the K~ 
essential subgroups. In the section 2 there are given the ne­
cessary and sufficient conditions for the existence of a (ma­
ximal) K-essential extension. The section 3 investigates sets 
of K-essential subgroups, where K runs through the subgroups 
of a group G» 

Key words; K-essential, essential subgroups; (maximal) 
K-epsential extensions; N-high, N-K-high subgroups. 

AMS: 20K99, 20K35 Ref. 2. 2.722.1 

0. Introduction.* All groups considered here are abeli­

an. Concerning the terminology and notation, we refer to Cll 

and £2]. Otherwise, if G is a group then G. and G_ are the 
^ P 

t o r s i o n par t and p-component of G t respect ive ly . 

We s h a l l frequently use the following no ta t ion : 

€t - group of r a t i o n a l s , 

Z — group of in tegers , i n f i n i t e cyclic group, 

Z (n) - cyc l ic group of order n, 

M - - f n e Z ; n > 0 J , 

P - the s e t of a l l prime numbers,* 

(n,m) - the g r e a t e s t common divisor of n and m, 

hptg) - the p-height of g in G. 
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Let KcN be subgroups of a group G. Following Krivonos 

[31 f a subgroup A of G i s said to be N-K-high in G i f A i e 

BMLxinal with respect to the property An N « K# 

1. K-essential subgroups 

Definition 1 .!< ljet G be a group and K a subgroup of G» 

A subgroup H of G i s said to be K-essential in G i f for eve­

ry ge G\K there i s n c K such that nge N \ L 

Bemark 1,2. 0-essential subgroups of a group G are ex­

actly the essential subgroups of G and every subgroup of G is 

G-essential in G# I f K i s a proper subgroup of G then no sub­

group of K i s K-essential in C 3?he group G i s K-essential in 

® for every subgroup K of G. I f K i s m proper subgroup of m 

mixed group G then no torsion subgroup of G i s K-essential in 

G. 

The proof of the following proposition i s straightfor-

ward and hence omitted. 

Proposition 1»3. Let II and K be subgroups of a group G. 

®ien the following are equivalent: 

( i ) 1 i s K-essential in G; 

( i i ) K i s tte.micgtte M - InK-4iigh subgroup of Gj 

( i i i ) i f oc : G—>A i s a hoaoiiorphisii and Ker(oc'| N)cK then 

Eercc c Kf 

(iv) i f X i s a subgroup of G and X?£K then XnN^Kj 

(v) i f I i s a subgroup of G then MA'H i s Kn H-essential im Hj 

Cvi) i f geG then I n < g > i s I n <g> -essent ia l in <g> { 

(vi i ) i f L i s a subgroup of K them E+Iy.L i s ^/Ii-essential in 

®/L. 
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I f N i s a K-essential subgroup of a group G and A i s & 

subgroup of G with An K = 0 then Ar\N i s e ssen t i a l in A by 

1.3 (v) . 

I f K and N are subgroups of a group G then K i s N - En 

n K-high in G i f f N + K i s K-essential in G. 

Proposition 1.4. The family of a l l K-essential subgroups 

of a group G i s a f i l t e r . 

Proof. I f N i s a K-essential subgroup of G and M a sub­

group of G containing N then M i s K-essential in 6 . I f K and 

E are K-essential subgroups of G then NnM i s K-essential in G« 

Proposition 1»5« Let G be a group. 2hen 

( i ) I f N i s m E<-essential subgroup of G for every i e I then 

N i s n K-4-essential in G„ 

( i i ) If N i s a K^-essential subgroup of G for every i e I , whe-

n 4 - s{ | i e l } i s a chain of subgroups of G, then N i s U K.-

essent ia l in G# 

( i i i ) I f N i s a K-essential subgroup of H, where H i s a K-es­

s e n t i a l subgroup of Gf then N i s K-essential in G. 

Proof» ( i ) I f ge G \ f \ \ then there i s an element j e I 

such tha t g e G \ l C | . Now, there i s n & I with ng6 NVK. and 

hence n g e N \ f\ K^. 

( i i ) Let g e G \ U K-* For every i e I there i s n^ 6 JN" such 

tha t B | g e N \ I ^ I f < g > A K « < a g > then obviously ng e 

eNVK^ for every i e l . 

Cii i) I f ge G\K then there i s n e M such tha t nge H\K. 

Further9 there* i s a e . N with mng€N\Z» 

.Remark 1«6. Let K^ and N^ be subgroups of a group G, i € I . 
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Ef ® N^ is © ^-essential in © Ĝ ^ then K^ is ̂ -essential 

in G. for every icl. Obviously, the same applies to direct 

products. 

Proposition 1.7. Let K^c % be subgroups of a group G4, 

i € I. Then © M± is ® ̂ -essential in © Q± iff V± is ^-es­

sential in G. for every ie I. 
1 m. 

Proof. Let g e 8 G.^ <B K. £ i.e. g =..Sl> g.* f where 1 3. .̂» 7 *j 

g. e G. for every j == l,...,mf & e JW and there is an inte-

ger kf 14 k .6 m, such that g± e G±\ K^ . Since V± is K^ -es-
k K. JC J* JC 

sen t i a l in G« , there i s n 6 M such tha t 2 .^ « % N % • *? 
3c k k k 

ng c ® H* then we are through, s ince obviously ng ^ ffi K.. I f 

n g ^ t S -^ then there i s an element r 6 If , 1.6r.6m such 

that ng- fi G. \ ik and so on. !Ehe converse follows from 1.6. 
r x r r 

I f G is a g^oup and K i s a tors ion subgroup of G, then 

the torsion parts of a l l the K-essential subgroups of G are 

K-essential in CL by 1.3. !Ehe folloiriiig proposition implies 

that a l l the K-essential subgroups in G t can be obtained i n 

th i s very wa*f. 

Proposition 1.8. I f K i s a tors ion subgroup of a group 

G and lr i s a K-essential subgroup of G t then every Gt~Ir-high 

subp^oup of G.-js K-essantial in G.* 

l*roof. I*et M be m G^-L-high subgroup of G and geGXK u 

u m If g c G t then there i s n e M such tha t nge I A K C N V K . 

I f g%&% then <gfM > t jj£ I4 there a re k c Jf , me K and t e 

€ G t \ L such that kg••* m * %# How, o ^ t l k g s N \ K ^ 

Proposition 1.9. l e t N be a l£-essentiail subgroup of & 
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group G and A be a subgroup of G. Then A i s N-high in G i f f 

A is8 Mn K-high in K. 

Proof. If A i s N-high in G then A i s a subgroup of K by 

1 .1 . 

Proposition 1 .10 . Let k, n be nonnegative integers. Then 

the subgroup nZ i s k Z -essential in Z i f f hp (k)> 1 im­

pl ies h^ (n ) -*h^(k) . 

Proof. The assertion is obviously for k - 0. Appose 

k s K . 

Let nZ be kZ-essent ia l in Z and k = pr, where p 6 

£ P and r c K • Obviously r ^ l c i ; consequently there i s 

m cJNV such that mre nZ M t Z • Hence n | mr and (p»m) * 1. 

If pM n then px I r and p i + 1 1 k. 

Conversely* l e t x ^ k Z • Now, there are p e P and i € 

€ N such that h^ (k) » i and h^ (x)< i . We can write x = 
s ya t n == yb, where (a,b) = 1. Obviously bx » ane nZ . I f 

b x e k Z then p 1! bx. Hence p | b and (p,a) =- 1. Consequently, 

p x | n and px I kf a contradiction. Hence b x e n Z \ kZ • 

2 . MftYjit̂ î K-essential extensions 

Definit ion 2 . 1 . Let N and K be subgroups of a group G. 

The group G i s said to be a K-essential extern ion of N, i f 

N i s K-essential in G. The group G i s said to be a maximal 

K-essential extension of N, i f N i s K-essential in G and i s 

not K-essential in a group H, whenever G i s a proper subgroup 

of H. 

Let G be a maximal K-essential extension of a group N. 

Then G i s a maximal K-essential extension of a subgroup M of 

N i f f M i s Kn N-essential in N. 
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Theorem 2.2. Let N and K be subgroups of a group A. 

Then the following are equivalea t : 

( i ) There exists a K-essential extension of N; 

( i i ) There exists a maximal K-essential extension of N} 

( i i i ) N i s K-essential in N + K; 

Civ) Either / K A N i s a torsion group and ( A>i l ) p 4»0 im­

pl ies l^/KnN) » 0 or Nc K. 

Proof. (i)s—^ ( i i i ) . I f G i s a K-essential extension 

of the group N then N i s K-essential in N + K by 1.3 (v)# 

(iii)aass^ ( i i ) . Let B be a divisible group containing 

A and Wl be the set of a l l K-essential extensions of N, 

that are contained in the group 2>« I t i s S + K s 1#L by ( i i i> , 

ffll i s partially ordered a nfl inductive. % Zorn'e lemma9 the­

re i s a maximal element G in fflL • Suppose N i s K-essential 

in a group H, where GcH. Now, there exists a homomorphism 

f: H—> D extending the natural inclusion G into D. Cons** 

quently, Ker (*l N) =- OcK and by 1.3 ( i i i ) , Ker f c l j hence 

f i s a monomorphism. If g€ f (E)\K then f (g)c H\K and the­

re i s n € K such that nf (g)€HT\Kt i . e . n g e N \ K . Conse­

quently, the group f (H) i s an K-essential extension of 1 and 

Gcf(H)c D. Hence G.*. H. 

( i i ) c = ^ ( i ) # Trivial. 

(iii)«==>(iv) . If maN, kc K and n * U then 

m + fceN + K\K i f f m|KnN 

and 

nm:+ nxeN\K i f f nm^KnN and nkcKnN. 

Moreover, i f mGNXKnN and XCKHN then m + k a N \ K 

(in this ease n - 1 ) . Hence, the assertion ( i i i ) i s equiva-
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lent to the assertion 

(v) i f meNXKnN and keKNKnN then there i s n e N 

such that nm^KnB and nkcKnN. 

(iv) «*-> (v) . Suppose m e N\ Kn N and k € K\ K n N* .Let 

n be the least nonzero natural number such that nkeKnN. 
K 

Such number ex is ts , since /KnN is a torsion group by, ( i v ) . 

I f n -= prf where p e P and r e M , then rk + KnN i s a 

nonzero element of the group ( /KnN) . For each prime p 

with p I n (N/KnN) = Q by ( iv) . Hence nm^Kn N. 

(v)-*-=-> ( i v ) . If N i s net a subgroup of K, i . e . 

BRgp KnN, then /KnN is a torsion group by (v) . If 

(K /KnN)p+0 and ( /KnN) + 0 for some prime p then there 

are elements k€K\KnN and mcN\KnN such that pk, pm £ 

€ Kn N. By (v), there i s n a M such that nm^KnN and nk € 

€ KnN. Now, (p,n) * 1 and there are integers u, v such that 

up + vn s ! • Hence k s upk «• vnkcKnN, a contradiction# 

Proposition 2 .3 . Let N and K be subgroups of a; group 

& and there exists a K-essential extension of the group K. 

Then 

Ci) 1!here exists a subgroup of C& that i s laaximal with res­

pect to the property of being a K-essential extension of N 

i » G; 

( i i ) The group G is a K-essential extension of N i f f /K 

i s an essential extension of the group /Kj 

( i ix ) The group G i s a maximal K-essential extension of K 

i f f G/K is a divisible hull of the group M+K/K} 

(iv) If /K is a divisible grwip then G contains a maximal 

K-essential extension of the group N. 
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Proof, ( i ) Let Wl be the set of a l l K-essential ex­

tensions of the group N that are contained in G. By 2.2, the 

group N + K i s an element of tyi • !J:he set W, is partial ly 

ordered and inductive. By Zorn's lemma? there i s a maximal 

element in 2?t • 

( i i ) Suppose that the group /K i s an essential exten-

sion of the group /K. If g€ G\ K then there is n € M 

such that ng * m + k, where mc N\ K and k€ K. Let r be the 

order of the element k •*- KnN. By 2 .2 , r i s f in i t e and na 4 

^ K. Hence rng«N\K. The converse follows from 1.3 ( v i i ) . 

( i i i ) I t follows immediately from ( i i ) . 

(iv) The group /K contains a divis ible hull /K of 
N+K 

the group /K and hence D i s a maximal K-essential exten­
sion of N by ( i i i ) . 

If G i s a maximal K-essential extension of N then G i s 
N+K an extension, of K by a divisible hull of the group /K. 

Corollary 2»4. Let K and N be subgroup of a; guoup G. 

Then 

( i ) If NcK then K i s the unique maximal K-essential exten­

sion of N; 

( i i ) If KcN then there i s a maximal K-essential extension 

of N. The group G i s a maximal K-essential extension of N 

i f f Q/K i s a divisible hull of M/K; 

( i i i ) If Kn N « 0 and N is ronzero then there exists a ma­

ximal K-essehtial extension of N i f f K i s torsion and Kp4»0 

implies N = 0. If i t holds then G i s a maximal K-essentisO. 

extension of N i f f G/K i s a divisible hull of B€>K/K. 
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Remark 2,5 . The existence-assumption of K-essential 

extension of N in 2.3 cannot be omitted as i t i s seen from 

the following example: Suppose G - N © K, where N » ^ and 

K £ Z . Then the group N+IVK i s essential in G/K and G/K 

i s d iv is ib le . But N is not a K-essential subgroup* of G. 

Remark 2.6. JJSL [43, T. Szele investigates the algebraic 

elements with respect to a given subgroup and problem of a l ­

gebraic extensions of groups. It i s closely related to the 

problem of K-essential subgroups as i t follows. 

Let N and K be subgroups of a group G« An elemert g of G 

is said to be K-algebradc over N i f g€K or <fg>H InK 4-

*¥< g> n N. I f every ge G i s K-algebraic over N, we c a n G 

K-algebraic over N. In this case the group G i s also said to 

be K-algebraic extension of N. Now, i t i s easy to see that G 

is K-algebraic over N i f f N i s K-essential in G. Hence, K-es­

sential extensions of N and K-algebraic exrtenaions of H are 

the same. 

3 . Comparing K-essential subgroups 

Lemma 3 . 1 . Let G be a group and N a subgroup of G such 

that M i s a torsion group. Let K be a subgroup of G such 

that i f ( /N)p+ 0 then G c K and K i s p-pure in G. Then K i s 

K-essential in G. 

Proof. Let geGNK. If n « c ( g • N) then ngeN. More­

over, ng^Z. For, i f ng6 K then there is keK such that ng * 

» nk. Now, n(g - k) = o and eonseqiaently g - ke K. Hence g«K 

imp Ilea a contradiction. 
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Lemma 3.2. Let G be a group. I f K i s a proper subgroup 

and N i s a K-essential subgroup oif G then /N i s a torsion 

group* 

Proof. Suppose g + Ne /N. If g f K then there exis ts 

n € -N such that ng€ NYK. If geK then by 2.2 e i the r ®cK 
K (hence K » G, a contradiction) or /KnN i s a t o r s ion group. 

Consequently, there i s m e M such tha t i g e K . 

Theorem 3.3* Let G be a group with subgroups K and N» 

Then 

( i ) N i s G.-essential in G i f f /N i s torsionj 

( i i ) If K i s proper and N i s K-essential in G then N i s 

G.-essential i n Gf 

( i i i ) If G i s not torsion then the se t of a l l K-essent ial 

subgroups of G and the se t of a l l G^-essential subgroups ©f 

© are identical i f f K i s proper pure containing G f̂ 

Civ) I f K i s proper then each K-essential subjgroup of G i s 

K t-essential in G; 

(v) If K i s proper ani torsion-free then each K-essent ia l 

subgroup of G i s essential in G* 

Proof, ( i ) Let N be G.-essentiaa in G. I f G » G. 9 

then /N i s torsion. If S+G t then M i s tors ion by 3 .2 . 
G Conversely, if /N i s a torsion group then S i s a G^-eaaea-* 

t i a l subgroup of G by 3 . 1 . 

( i i ) I t follows immediately fr om 3•2 and ( i ) • 

( i i i ) Let K be a proper pure subgroup of G containing 
c 

G t . I f N i s G t-essential in G then M i s a torsion, group by 

( i ) and N i s K-essential in G by 3.1* the converse follows 

from ( i i ) . 
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Suppose that the set of a l l G^-essential .subgroups of 

d and the set of a l l K-essential subgroups of G are i d e n t i ­

c a l . If G. is not a subgroup of K then each G^-high subgroup 

of G i s G .-essential in G and not K-essential i n G. Next, we 

suppose that K contains G+ and K is not pure i n G. There ex­

i s t s g s G\ K such that <g> n K * < kg > , where k € If . 

Let N be a subgroup maximal with respect to the p roper t i es : 

Nt = 0, N n < g > = < k g > . Obviously, N i s not K-essential 

in G« I f xcGVG^uN then ei ther <XgN> t4:0 or <x,K> n 
A < g) $ < kg > •-£& the f i r s t case there are rt e M , h e N 

and t c G . such that nx + h = t | hence o*(t)nxc NNG^.. In the 

second case there are m,nic JF and h€ N such that nx + h -

= mg. Now, kmg = knx * kh, i . e . knxcNSG^. Consequently N 

is G^-essential in G, a contradiction. Hence K i s a pure sub­

group of G containing G t , K is proper since G i s not toraion. 

(iv) If N i s a K-essential subgroup of G then N i s 

G^-esaential in G by ( i i ) and N i s 1L-essential in G by 1.5. 

(v) I t follows from ( iv ) . 
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