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FACTOR~SPLITTING ABELIAN GROUPS OF FINITE RANK

Ladislav BICAN, Praha

Abstract: A structural description of factor-splitt-
ing torsionfree abelian groups of finite rank is presented.
This criterion enables us to prove that every completely
decomposable torsionfree abelian group of finite rank is
factor-splitting. .
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Throughout this paper by a group it is always meant an
additively written abelian group. A torsionfree group G is
called factor-splitting if any of its factor group G/H splits
(see [9]1). We shall use the following notation: If g is an
element of infinite order of & mixed group G then hg(g) deno~
tes the p-height of g in the group G (see [1])). If o + O is
an integer, o« = p:kec’ , (ec%p) = 1 then we write hp(cc) = k., |
We put hp(o) = for all primes p. The symbol & will de-~
note the set of all primes. If sr’c ## and T is a torsion
group then T,, is a subgr.oup of T consisting of all the ele=-
ments of T the order of which is divisible by primes from #“
only. If M is a subset of a torsionfree group G then 4M }:, , '

is a .Tr'-pure closure of M in G, i.e. the greatest subgroup of
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G

{W‘s‘r'/{M} is g ’-primary. R,, will denote the

G such that
group of rationals with de..ominators prime to every pe€ a’.
Every maximal linearly independent set of elements of
a torsionfree group G is called a tasis of G. A sequence
£g18ys+++ Of elements of a (mixed) group G is said to be &
p~sequence of g, if p\gi+1 =85, i=0,1,s.. « Stratton [(11]
proved that a mixed group G of finite rank splits if and on-
ly if G contains a free subgroup U of the same rank as G such
that for some integer oc 3+ O the following two conditionms
hold:
(1) hg(px) =1+ ng(x) for all x € « U, and all pear,

(2) for each p € or there is a morphism ff’p defined
on G such that Ker .‘/’p is p-free and p~pure in G and every
element of ff’p(ocU) has a p-sequence in i‘fp(G).

The systematical study of factor-splitting groups was
begun by Prochézka [91,[10]. The results obtained here gene-
lralize those of [ 2] and answer some questions from £91,[101.
The technique of the example is essentially the same as in
[31,041.

1, Definition: Let B =-£g1,...,gn} be a basis of a
torsionfree group G and p be a prime. We say that B satisfies

ch s k. _ &
(FSp) if it holds: If p'x = 4’%4

m
equation p’%'fg, =, 3 Big; with hp(ﬁi)zl, i=1,2,...,n and

i1
B; = < ; whenever hp( «;)Z 1, is solvable in G.

o<;8; for some xe G, then the

2. Proposition: Iet B ={gl,...,gn} be a basis of a
torsionfree group G. Then G/4£ B} splits for every Bc B if
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and only if B satisfies (FSp) for almost all primes p.

Proof: First, suppee that the condition is not satis-
fied., It is easily seen that there is no loss of generality
in assuming the existence of an infinite set ar’ of primes
such that p<{P)x = -Lé4 P 38 *+; % ot ;& is solvable in

= sZ+4 AP
@, but p<(P)=1e = i§:4 ;83 +4.=%+4 f3;8; is mt solvable in
G for every p € ¥’ . If we take B” ={g;  ,004,8, }, then
G/ 4B} does not split since it does not satisfy Conditiom
(1).

Now we proceed to the sufficiency. Obviously, we can sup-
pose that B’ =48 1s000s8y} « Let I be the set of all pri-
mes p for which G has (FSp). Then Jr = s’ is finite and if
H is such a subgroup of G that H/{B} = (/4 B3} ),, then, by
(8, Theorem 61 , H/ 1B“} splits if and only if G/<£B‘} does.

Hence we can assume that ar’= ar .

G/
Suppose that hpm'} (_‘-_g,f <8 +4B’}) =r< o and let

ay R m .
P =‘;‘§4 P «;8 +i.=%+4 < 3;&;, Y€ G. By (FSp), for suitable

S
1
2= =, g+

integers (84,45, 8, the equation P
o
+L.§+4 (8 ;8; is solvable in G, so that 8 = r + 1 and Condi-
tion (1) is satisfied.
_let p be a prime, For the sake of simplicity we shall as-
sume that the elements gy4js...,8&, are enumerated in such a

way that

G . i .
(3) g +{gi+1,...,sn} p is of minimal p-height in

ALNEIRPPR S

p/{gi+1’...’gn§gfor all i =k + 1l,.4.,n,
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{8m+1,---,gn§

(4’) p/-igm+l,.oo,8n} 13 bounded by p

and

(5) gi+-fgi+l,...,gn}g is an element of

e :'--,Bn} - t for a
Er P/ iggprsenrgl OF infinite poheign 11

=k + 1',...,m.
From (5) we get that for every natural integer r the e-
quation prx =8 + ¥ is solvable in G for some y € < i41r0ee

t m
G + ..t
...,gn}p. Then p gy =9._=§.+4 ccjgj and so pr t:c =pé&; +
e
+ 5:2—:.-»4 o 58 ; is solvable in G, Using (FSp) repeatedly we
obtain that the equation
m

r - I3 3
(6) px'gi";, » achJ

is solvgble in G for every natural integer r,

Further, suppose that 8 +4B% 18 of mipimal p-height

8 < 00 mG/-{B},p xk & ?%.4-1 gk)ga. Assume that

we have constructed the elements Xip1reeesXy suth that

(7) g; +-ij+l,...,xk,5’} is of vmini';nal P~height s;<

< o in
G/{,jﬂ,...,xk,s‘i ’
. . n
® pixjteyt, F e e iz i,k

s G .3 RSPV
Now if every element of /ixi-l-l""’xk’B.} 13 of infini-

te p-height, we stop. In the other case, let & *ix, apreer
...,xk,B'} be of minimal p-height 8;< o0 in
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¢}
/{xi+1,...,xk,B‘} (8; are assumed to be suitably enumera-

(i)

8 x.,
ted). Then piiy' =& * = Py (1) * %—M Yo &
:-|.+ B

85+85, &
yj€ G and p 1yi'p 181 ’“2“41314-1 rﬁ(l) (g, +
"
(1‘) + m . . :
1.%4—4“’ 8 )+p i 1" %4—4 ¥ 1(.:") & since obviously
8.z8.

j= %510 i= 1n-o-., k - 1. Now, using (FSp) repeatedly, we
get (8) for J = i, In this way we construct elements Xpypseee
eeeyXy satisfying (7), (8) such that every element of K =

-{gl,...,g s12+1).o-yxk)B %xl i . B’} is of infinite
+ LN 3 b ]

p-height.
Consider the element
£
(9) 4,;4 <38 + Xy, qy0009%,B°} .

By hypothesis there are elements ype G with
£ & m
= (r) (r)
+ 3
L Y A a.gzm B i ¥ &

and with respect to (6) we can assume that yg,i

= ?ir) = 0, Then the equality

R
( 1)_

m
(r+1) (r)
9.:0%4— 73 )85

™+ r+1) _ Qr) . .
yield p ‘//3 ¢ /3 by the construction of x5 8 and

consequently pr/ (7'(”1) - S‘(r)) by (4). It follows now that

{p»\?r +{x;,+1:-"’xk’a }} p=1 18 a p-sequence of the element
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E=

(9). Thus every element of K has a p-sequence, and hence
G/ 4B’} satisfies (2) by [11, Lemna 3.3, 3.4 1.

3. Theorem: A torsionfree group G af finite rank is
factor-splitting if and only if every basis of G satisfies
(FSp) for almost all primes p.

Proof: By [9, Lemma 2.6] G is factor-splitting if end
only if G/U splits for every free subproup U of G. Now it
suffices to use Propositiom 2.

The following example shows that the (FSp)-property for.
one basis and almost all primes is generally not sufficient

for the factor-splitting of G. .

4, Example: Put U={a} @ 1b} @»n.é:ar{‘l’}; vs=
=-ip3‘ap -(p-1l)a-b,peaxr? and G = U/V, It is easy to
see that a + V and b + V are of zero p-height in G for all
primes p and consequently {a + V, b + V3 satisfies (FSp)
for all primes p. For x =a +V, y = a = b + V we have px ~
-y = p3ap +V, pe s while the assumptiomn '
px + pAy = pP(xa + @b + % Yaiq) * % qq(q3nq -

- (@ - 1)a - b) (finite sums) leads to the equalities

p +pAd

"

e
&
'

S (q - l)rq_%
- = 3 -
pA =p°f3 2719.

0=plyg+ar, .

Hence p = p3(oa+ﬂ>) é 974 and 80 p2/ (1 ""Zp)° The

second equality now leads to a contradiction -1 -pA =
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= p3f3 - = 14" (1 +1p). Thue {x,y% satisfies (FSp)

5. Lemma: Let 2 =4_QJ'4 Ty and let G be a torsion~-

free group of finite rank. If G® Rpyy, i1 = 1,2,...,m is fac-
tor-splitting then G is factor-splitting.

Proof: let B = {gl,...,gn} be an arbitrary basis of
G. Since G @ Ry; is factor-splitting, B has {FSp} for al-
most all primes p & 97'; by Theorem 3. Hence B has (FSp) for
almost all pe o ad G is factor-splitting,.

6. Theorem: Every completely decomposable torsionfree
group of finite rank is factor-splitting.

Pioof: Let G =&«f.=%1 J:L be a complete decomposition of
G, hie Ji. For any permutation ¢ € S‘,‘1 defire ar; to be
the set of all primes p with hg(hq(l))z:hg(h?(a)) vee
...zhg,(hg(n)).w Now G® R‘.,,-g is a completely decomposable
group with ordered type set so that it is factor-splitting
by L9, Theorem 7). Lemma 5 now finishes the proof.
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