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FUZZY MAPPINGS AND FUZZY SETS

Aled PULTR, Praha

Abstract: It is shown that in the language of fuzay
sets various notions of dispersed mappings (more general-
ly, dispersed morphisms associated with a category) can be
represented. Moreover, this point of view is, in a sense,
finer than the classical approach. - Adding the dispersed
morphisms one obtains & U -category over 7" a clesed cate-
gory of fuzzy sets. The 7f -categories obtained in such a
way areé chnaracterized.

Key words: Fuzzy (dispersed) mappings, fuzzy sets, 7 -
categories.

AMS: 04A05, 02K10, 18D20 Ref. Z.: 2,726,11

The expression "fuzzy mappings” is .loosely used for va-~
rious generalizations of the motion of a mapping, in parti-
eular for those where the value in a point is in that or
other way indetermined (multivalued mappings, stochastic map-
pings, etc.). On the other hand, in the expression "fuzzy
set"™ the attribute indicates the possibility of incompletely
present elements. Thus, these two usages of the word fuzzy
appear quite incoherent: A mapping £f: X—> Y is a partimlar
kind of a subset of X*Y; the question how far an Rc XxY
is from being a mapping, how fuzzy it is in the first sense,
is quite independent on the questiom how fuzzy it is in the
second one: R can be multivalued but crisp, and on the other

hand there may be for every x just one (x,y) in R, but often
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with an incomplete membership.

In this paper we want to show that, still, there is a
way to express the fuzziness in the first sense in the lan-
guasge of fuzzy sets. Moreover, unlike in the classical des-
cription, the degree of fuzziness, not just the fact that it
is fuzzy, is expressed.

The main idea goes as follows: Mappings between fdzzy
sets are classified according to the degree in which they wea-
ken the membership (in what extent it can happen that f£(x) is
a weaker member of Y than x has been of X). As it is usually
done in definitions of fuzzy mappings, we extend the sets (or,
more generally, objects of categories) adding the possible
"irregular values" (subsets, probability fields etc., see e.g.
[11), but not in the full membership. The crisp part of the
extended object is still the original set (object), and the
dispérsedness of the new mappings is measured, roughly speak-
ing, by the degree in which the values in the original mem-
bers differ from such.

In this way, starting with a concrete category, one gets
a 'V'-category over U a closed category of fuzzy sets, the
crisp part of which is the original one. In the second part
of this paper we show a one-to-one correspondence between dis-
persion procedures and a special kind (of which we present a
simple characteristics) of such 7 -extensions of concrete

categories.

§ 1. Preliminaries
l.1. Throughout this note, L is a lattice with a least

and a largest element o, e respectively. A fuzzy set X (more
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exactly, an l-fuzzy set) is a mapping
X: 2 X—>1

where 7X is a set.

We write

xe X for X(x)=a.

Let X, Y be fuzzy sets. A morphism
f: X—>Y

is a mapping £: 7X—> 7Y such that for every x e ?X, Y(£(x))=
zX(x). Thus, in the convention above, f: 7X—=7Y is a mor-
phism f: X~—> Y iff

for every &€ L, x € X implies f(x) €Y.

Fuzzy sets and their morphisms form a category (¢f.[5]) which
will be denoted by
’ L-Fuzz.

Associating with a fuzzy set X the set ?X and with a morph-
ism X—> Y the corresponding mapping 7X—> 7Y we obtain a
(faithful) functor

? ¢ L=Fuzz — Set

(Set designates the category of all sets and mappings). Fur-
ther, we define a functor
! : L-Fuzz —> Set

putting !X =4x| x € X} and taking for !f the domain-range
restriction of f. '

l.2. A tensor product on L is an order-preserving semi-
group operation © with unit e such that there is a homomor-

phism h: 1P — 1 satisfying the condition
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apb<e iff a<h(b,ec).

(If L is complete, a necessary and sufficient condition for
the existence of such an h is that all (an~) and (~Da) are
suprema preserving mappings L —>L. Thus, e.g. if L is the
unit interval, the continuity of the operation o is more
than sufficient.)

The couple (L,0) will be referred to as tensored lattice
(thus, if L is complete, this notion coincides with the no-
tion of an integral CL-monoid from L2]).

1.3. In [6) there was shown that the closedness structu-
res

(® ,H,...) (i.e. structures of a symmetric monoidal clo-

sed category, see [4]) on L-Fuzz such that
7H(X,Y) = 7Y'X and H(X,Y)(f) = e for £: X—> Y

(i.e. such that all the mappings are in some extent members.
of H(X,Y), the morphisms having the strongest membership pos-
sible; by the formula below it follows that then, moreover,
if H(X,Y)(£f) = e necessarily £: X—>Y) are in a one-to-one
correspondence with the tensor products with unit e on L. This

correspondence is given by the formula

f e H(X,Y) iff for every be L, x €,X implies f(x)e Y.
(In particular, the cartesian closedness - cf.[5] -~ corres-
ponds to the operation of infimum; in that case, of course, L

has to be supposed comple tely distributive.)

We write

f:,X—>Y for f e H(X,Y).
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The closed category with the closedness structure induced

by O will be denoted by

(L, )-Fuzz.

§ 2. Dispersed morphisms
2.1. A concrete category (QL,U) is a category Q to-

gether with a faithful functor U: U —> Set.

2,2, A dispersion on a concrete category (Q ,U) con-
sists of the following data: ’

(1) a tensored lattice (L,o),

(2) a concrete category (H,V), and

(3) functors F: & —> » and G: & —> L-Fuzz such
that \

(i) teGg U,

(ii) ?oG =VoF, and

(iii) whenever X, Y are objects of & and V£ = ?g for
f: FX—>FY and g: GX—>GY, there is an h: X—>Y such that
f = Fh and g = Gh,
The situation is visualized in the following diagram:

U o —7FYs>3

G v
?
Set we=——— I-Fuzz —= Set

An a-dispersed morphism between objects X, Y of @ , writ-
ten '

a-dis
f: X *—;Y’
is a morphism

f: FX—>FY
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of 3 such that V£: GX—>GY in (L,0 )-Fuzz.

2.3. Remarks: 1) The functors G, F are necessarily
faithful (we have !o G faithful, hence G is; consequently el-
8o F, since Vo F = ?0G).,

2) Consequently, the morphism h in the condition (iii)
in 2.2 is uniquely determined by the f. Thus, the functor F
establishes a one-to~one correspondence between the morphisms
X—>Y and the e-dispersed morphisms Xﬁi"ﬁgr.

3) Of the category A , only the full subcategory ge-
nerated by F(Q. ) plays a role.

2,4, et us summarize more intuitively what happens in
a dispersion of (Q,U): an object X of Q@ carried by UX is
represented by an object of 3 carried by a fuzzy set M such
that IM (i.e. the system of the elements with "full member-
ship" in M) still coincides with UX., The morphisms between
thus fuzzily extended objects which are é.lso morphisms in I~
Fuzz are unique extensions of the original morphisms (and can
be identified with them). At the others, the a in the expres-
sion Vf:&GX——>G! represents the degree in which it assimila-
tes a morphism of (. (the degree of strictness of the values
.etc.).

2.5. Remark: One sees immediately that

£: x 228i8D y g 5. y 2=di8D g jppyies gopix 20P=disp
Thus, a dispersion on (Q,U) gives rise to an (L,n )~Fuzz-ca-

tegory ‘€ (see further in 4.7) where fe_ €(X,Y) iff

£: x 22418D v opg into which @ is embedded exactly as its

"erisp part". Such (L, 0 )-Fuzz-categories will be characteri-
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zed in § 5,

§ 3. Examples

3.1. In (1] an interesting way of representing disper-
sed morphisms was presented. Roughly speaking, given a monad
T = (T,&,7 ) over R consider the natural embedding J of
® into &T . It is not full; the morphisms JX —> JY which
are not in J(R) represent the newly added generalized morph-
isms. This construction, already with R = Set, covers many
of the usual notions of generalized mappings (partial func-
tiors, relations, stochastic mappings etc.). We will show now
that for R = Set the construction from [1] can be viewed as
a special case of the dispersion from 2.2, In fact, there
holds :

Propogition: Let F: Set — 3 be a left adjoint to &
faithful V: .’.(5—-—->’Set. Iet L be the lattice consisting of ©
and 1 (there is just one tensor product, namely the infimum,
thefe). Then there is a G: Set —> I-Fuzz (unique up to natural
equivalence) such that (L, (#,V), F,G) is a dispersion on
(Set,1gey).

Proof: Let @ FoV—>»1, m : 1—> Vo F be the adjunc-

tion transformations, Since L =40,1% , the formulas
76 = VF, 1G(X) = my(X)
uniquely determine a functor G: Set —> L-Fuzz. Let f: FX —» FY,

g: GX—> GY be such that Yf = 7g. Thus, VE(7 y(X)) © 724(Y)

and hence there exists an h: X—> Y such that.

VE o nx:' qzxaho
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But we have also VFh o 7y = 7 yoh, and since Vgon is
the morphism associated with ® in the one-to-one correspon-
dence of the adjunction, Fh = £, Since 7?Gh = VFh = Vf = 7g, we
have also Gh = g,

3.2, Multivalued mappings: Let L be the inversely orde-
red set of positive natural numbkers plus o , 00 the usual
multiplication of numbers. Let 33 be the category of all sets
of the form FX ={Ac X| A%+ @ 3% and their union preserving map-
pings, V: B c Set. Define functors F: Set —> 3 ,G: Set—>
~—> L-Fuzz putting FX as above, Ff(A) = £(A), 7(GX) = FX,

A & G(X) iff card A£n, ?G(f) = F(f). Obviously, the condition
(iii) is satisfied. '
It ;: FX—>FY in J3 and A €,0X, we have card g(A) =

= ecard U {£(x)| st&.e‘er‘.,A

Thus, we see that here g is an n-dispersed mapping X —>Y

card £(x)4£ m.sup card f£(x).

iff it is a multivalued mapping X—> Y such that sup card f(x)«
£ n.

3.3. Stochastic mappings: ILet L be the set of non-posi-
tive real numbers plus —~c0 with the usual order, © the
usual addition. Let I be the unit interval. For a set X defi-

ne FX as the set

£p: X—I|p H(IN403%) finite, % p(x) =13%

(from now on, we are going to represent the elements of FX as

formal linear combinations x%X p(x).x of elements of X)

endowed by the obvious convexity stiructure (i.e., fora;el

n n
such that ;,2:‘4&1 =1, :,2;‘4&5. % p; (x).x =
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& )
= % (_LE__;,, a;p; (x)).x ).

Define /A as the category the objects of which are the FX,
the morphisms are the mappings g for which g(= aipi) =
= 2 a;g(p;) = Saig(pi). V: 3 —> Set is the natural
forgetful functor.

Define F: Set —» 3 , G: Set—> I~Fuzz as follows:

FX as above, F(£)(= p(x).x) = = p(x).f(x), 76X = VEX,
D €,0X iff % p(x).log p(x)= a ;

obviously, if p €,GX implies f(p)eaGI’ ¢ = Fh for a suit-
able h. Thus, the condition (iii) is satisfied.
Now, let £ be an a-dispersed mapping X— Y. Thus, we

have £: FX—> FY in 3 , hence determined by a formula
f = - S
(x) % xy Y
and it satisfies, in particular, the inequality

log £z a.

(1) inf % t Xy

X e X xy

On the other hand, let (1) hold for an f. We have, for a ge-
neral pe FX, f£(p)(y) = % P(x).f , and hence

2 1)) 208 2(R)(y) = % ( 2 plx).f).108( 3 p(2)T, )=
= 2500 3 2 08(5 pla)et,) 2 X o) 3 £ lo8(p () 2, )=
= % p(x).log p(x). %" oy * % p(x). % fyye108 fxy z
2 >, p(x).log p(x) + a,

so that f is an a-dispersed mapping.
Thus, here f is an a-dispersed mapping iff it is a stochastic
mapping with the "informational dispersion"
- < .
sup (- = fxy.log fxy) | al
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3.4, Dispersed contractions: Let.L be the inversely

ordered set of non-negative real numbers, O the addition.
let (Q,U) be the category of metric spaces and contractions.
For a metric space define FX as its Hausdorff superspace
(see e.g.[3]; FX is the set of all non-void compact subsets

of X endowed by the metric

©*(4,B) = max (lix(agA @ (x,B), max. © (y,4)).)

Let 7d be the category of all the spaces of the form FX and
their contractions such that £(A) = U { £(x) | xe€A}, V:
¢ B —> Set the natural forgetful functor. Define Ff for f:
: X—>Y by FP(A) = £(A). G: @& —> L-Fuzz is defined by 7G =
= VF with A €,CGF iff diam &<a (since diam f(A)<diam A, this
definition is correct). A mapping g: FX~—> FY is an a-disper-
sed mapping X—=Y iff diam g(€£x% )<a for every xeX. (If
sup diam g(£x%)<a we have diem g(A)< diem A + a&. Really,
consider x;€ 4, u;e g(x;), i = 1,2; since g is a contraction
with respect to 9* above, we have d = diam A = @*(g(xl),
g(xz)), hence @ (ul,z)éd for & zsg(xz) and hence
@ (u4u,) £ @ (uy,2) + @ (z,u))£d +a.)

3.5. Remark: In all the examples, there was a generator
I of (' (the one-point set or space) and a natural equiva-
lence 22 : QU(I,-) & !1G such that for every ieaGX one had &
(unique) % : FI—> FX with V(§ )(2e(17)) = x and V(§ ) :,GI—>
—> GX. This property will play a role in the sequel.

§ 4. Praedispersions and fuzzy extensions
4.1. Convention: Throughout this and the following para-

- 450 -



graph we will use the symbol
I

for a fixed generator of the category in question. Thus, if
there is no danger of confusion, we write F(I) = I in the
case of a functor F: @ —> 53  just to indicate that FI is
again a generator of A (not necessarily really identical
with the Ieobj Q).

A concrete category (Q,U) in which the forgetful func-
tor is naturally equivalent to Q(I,-) will be indicated by

(a,n.

4,2, An (L,D )-praedispersion ((L,0) is a temored‘lat-
tice) &= (R,V,3,6) over a concrete category (1 ,I) con-
sists of '

a concrete category (3,V),

a one-to-one functor F: & —> B | and

& functor G: A —» L-Fuzz
such that

" F(objQ) = obj B , and

VoF = TeG,

The following special conditions on presedispersions will be
considered:

(a): There is a natural equivalence

e : A(I,-)= 10,

(ax): (a) % ,v moreover,

for every x € GX there is exactly one § : FI— FX
such that V(¢ )(2e(1ly)) = x and V(§): GI—>GX.

(b): For any two morphisms f: FX— FY, g: GX —>GY
such that Vf = ?g there is an h: X—> Y such that £ = Fh and
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g = Gh.

4.3, Remarks: 1) Since F is one-to-one, G is faith-
ful, and if (b) holds, there is exactly one required h.

2) For a concrete category (Q,I), the dispersion from
2,2 is a praedispersion satisfying (a) and (b). Moreover, all
the examples from § 3 satisfy (a>*) (see 3.5).

4.4, let éD‘L= (@i,vi,Gi) be praedispersions over
(ai,I) (i = 1,2)-

We say that 34 is equivalent to £, and write

9, ~ D,
if there are isofunctors
E:ﬁ4=552 , Bt QU 5@2

and natural equivalences

e:V,EVE, € :06,= G

such that E(I) = I, EoF, = F,o Fana 7€ = eF,.

4.5. Remarks: 1) Obviously, ~ is reflexive, symmet-
ric and transitive.

2) One sees easily that Oy~ D, iff there is an iso-
functor E: B, ¥ B, and a natural equivalence € : V; &
= V, 2 E such that EF,(I) = Fo(I), E(F(Q,) = Fo(Q,) and

-1
for x eaGl(X) e (x) € ,0,F5 EFl(X)

(and that in such a case the E and € are uniquely determi-
ned).

4.6, Proposition: ILet D, ~ &) . If D, satisfies
(a), (ax), (b), respectively, so does D, . ‘
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- Proof: We will just give the formulas, omitting the

tedious checking.

(a) 2,: Q,(I,-) = 16, is obtained as

~1
~ N ; E
Qy(1,-) = QAy(I,E~) o 1 % a,(a,-),
~-l % 1 ! 3EL

Fl— 10,5 — 10,

g .
where () = B1().
(ax) For x ean(X) we have y = 215 1(x) E&GIE']‘(X) for
which there is en 7 : FiI—> Fl'ﬁ'l(x) such that
Vy(m)(%e(1)) = y and V1(%): GI—> GyE-(X). Consider
§ =E7q : F,I = EFI— EFE X = PX,
(b) Iet V,f = ?g for f: FyX—>F,Y, g: G,X—>G,Y. We have
(e togoe) = Vl(E'lf'), hence there is an h such that

Elf =Fhanda e7logeoe =0h. Put b = .

4.7. For a notion of a U -category where 77 is a clo-
sed category see e.g. [4]. In particular, an (L,0 )-Fuzz-ca-
tegory € consists of a class obj € of objects, L-fuzzy
sets < (X,Y) associated with couples of objects, associati-

ve composition
° : €(¥,2) ® € (X,Y) —> € (X,2)

(i.e., an associative composition

°o: 2 (Y, 2)x TE€X,Y) — 7<€(X,2)

such that for (3 €, €(Y,2) and «x €, € (X,Y),
Boecey ,(X2)), and units 1y €%¢ (X,X) such that for o €
€ 7€(X,Y) o« o 1y =1lyoec = o .
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For an (L, O )-Fuzz-category < define categories
e , 1€
Putting
obj?€ =obj !I€ =objE ,
(7€) (X,Y) = 2(€(X,¥)), (1€ )(XY) =1 (€ (X,1)).

4,8, An (L,0 )-extension of a concrete category ( Q,I)
is an (L,n0 )-Fuzz-category € such that there is an isofunc-
tor H: @ = !¢ such that FI is a generator of both 1< and
7€ . A

The following special conditions on (L, O )-Fuzz-catego-
ries € with & cémmon generator I of 1€ and 7€ will be
considered:

(¢) If £f: X—>Y in ?<€ is such that

o« €, €(I,X) implies fo oc & €(I,Y),
then £ e, €(X,Y).

(ex) If £: X—> Y in ?€ is such that

o &, %€(I,X) implies focr qu.&‘e (1,Y),
then f €, € (X,Y). '

4.9. (L, n)-Fuzz-categories <¢; (i = 1,2) are said to

be isomorphic (we write ‘61 ~ ‘62 ) if there is an isofunctor
E: ?‘El.z_ ?‘Cz such that

Te, € (X,Y) ifr Ef e, €, (X,Y).

4,10, Proposition: Let ‘C1~ ‘62 . If €, satisfies (c),
(e* ), respectively, so does €, -
Proof is trivial.
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§ 5. Extensions respresenting dispersions

We observed in 2.5 that,(in the terminology of 4.8) a
dispersiom over a category gives rise to its extension. We
will show now that, roughly speaking, the dispersions satis-
fying (a* ) may be characterized as the extensions satisfying
(ex).

5.1, (ef. 2.5.) Let P = (AH,V,F,G) be a praedisper-
sion over ( ,I). We associate with & an (L, 0 )-Fuzz-cate-
gory € as follows:

obj € =obj A ,

fea‘e(X,Y) iff £: FX—>FY and Vf: GX—>GY
(composition as in R ).

The situation will be indicated by

Dr— € .

5.2, Proposition: If @1 ~ e’()z” and :0_;’1——-—> <€, ‘then
€~ <€, .

Proof: Consider the isofunctor E: B, = 7€, —> B, =
= ?‘Cz and the natural equivalence € : V1—>V2E. We have

_ -1
Vz(Ef) =€ o0 Vlfv £ .

Let f €, %€, (X,Y), Hence, V;f: MX—>G;Y. For an x &G, (EX)
we have (see 4.5.2) e "Lx) € ,G, X, hence V,f( e 1x)) €oatr
€, a4 Y =nd hence V,(Ef)(x) e, ,p0,ET. Thus, Ef €y ¢, (EX,EY).

Using the fact that V,f = g™

0V, (Ef) o & we see analogous-
ly the converse. |

5.3. With an (L, 0 )-Fuzz-category € having a common
generator I for 1€ and 7€ associate the praedispersion

D= (1€, 7€(1,), 1€ c ?€ , <€(I,~)). The situation will
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be indicated by
€L —> D .

5.4. Proposition: If <€, ~ ¢, and ‘f_i +—> &, , then
@1 ~ 9’02 .

Proof: We have E: ?7¢, = ?“62 with the property from
4.9. In particular, E(1%€;) = !‘fé. Define

€ : 7€, (I,-) —> 7€,(I,E-)

putting e€(ec) = E(cc )e This is a natural equivalence and
we have s(co)ea‘CZ(I,EX) for o e, €;(I,X). Thus, the sta-
tement follows by 4.5.2.

5.5. Proposition: Let €+ & . Then ) satisfies
(ax). A

Proof: Take ¢¢ = ident: !1¥ (I,-) = 1€ (i,~). Then
V(g )(ee(1)) = ?€(I,§)(1) = § which yields immediately
the uniqueness. If § € ¢ (I,X) and if o« € [ %€(I,I), we ha-
ve V(§ )(ec) = §oc € et (I,X) 80 that V('f‘ )i €I, I)—>
—> € (1,X).

5.6, Proposition: Let ¢ satisfy (c), let ¢ —> D .
Then & satisfies (b).

Proof: Let f: X—>Y in ?¢€  and g: € (I,X) — <€ (I,¥)
be such that ?€(I,f) = ?g. Then g = € (I,f). Hence, if «x €,
e, €(I,I), we have £ o ¢ = glec) e, €(I,X), so0 that, by (e),
£: X—>Y in 1€ .

5.7. Proposition: Let & satisfy (ax), let O > €.
Then <€ satisfies (c¢xk).

Proof: Let f: FX—FY in B = 7€  be such that

< €,€(I,X) implies focc €, € (I,Y).
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Thus, if o : FI—>FX is such that Vec : ,GI—> GX, we har
ve V(foc) = VEo Voo 340G —>GY. For an x €,0GX take the
§ ¢ FI—>FX such that V(§ )(se(1l)) = x and V(§ ):,6X—>

—> GY. Thus,

V(£)(x) = V(£ o §)(ee (1)) €,,06Y

so that Vf: GX—> GY and hence f e, € (X,Y).

5.8. Proposition: Let € satisfy (ex), let
€L — D — €.
Then
L~ €.
Proof: We have ?€” = ?¢ . Put E = 1, « We have
£e, € (X,Y), iff o € € (I,X) implies fooc € o€ (I,Y),

ice. iff o« &, €(I,X) implies ?€(I,f)(ec) e‘w”‘f (1,Y).
thus, iff f e, €1X,Y).
5.9. Proposition: lLet & satisfy (a*k) and (b), let

D> € —> D’ .
Then

o'D -~ Q’ .
Proof: Put @ = (A,V,F,G). Define E: € & B putting

EX = FX for objects, Ef = f for morphisms,

e : ?2€({U,-)—>VoE
putting

Sx(f ) = V(g )(2e(1)).
One checks easily that it is a natural transformation. By
(ax), every €y is invertible so that € is a natural equi-

valence, We have to prove that
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I. '€ =E(1¢)=F(Q), and that

II. gea‘ﬁ(I,X) implies e(? ) EaGX.

I: If £: X—>Y in 1€ we have Vf: GX—>GY, hence
V£ = 7g for a g: GX—> GY. Thus, by (b), there is an h with
£ = Fh. On the other hand, for £ = Fh, h: X—>Y, we have
V£ = VFh = ?Gh: GX—>GY, so that fe 1€ .

II: If § €,€(I,X), we have § : FI—>FX in 3 ,
V(g ):,GI—> GX, Thus, e(§) = v(g )(2e(1l)) €,6X,

5.10. Let us summarize the statements of 5.5 - 5.9.
See the following diagram:
<

!

D (ax) € _(e)
Clex) =—/———= D (ax,b)

Starting with a general <€ one goes over to a & satisfy-
ing (ax ), from this we obtain a € satisfying (e ). Such
¢ are already in a one-to-one correspondence wtih the dis-
persions satisfying (ax). Thus, an (L, 0)-Fuzz-categay re-
presents a dispersion (satisfying (ax)) of its crisp part
iff it satisfies (% ). -

5.11. To illustrate what happens let us compare two ex-
tensions of the category of metric spaces and contractions,
The first one was described in 3.4, for the second one let
us take the Lipschitz meppings (L is the inversely ordered
set of real numbers =1, o is the usual multiplication,

T e, €(X,Y) iff @ (£(x),f(y))<a. @ (x,y)). Unlike in the

first case, in the second one if we start with the given ¥ ,

- 458 ~



proceed to & and back to ¢“ we have

1€ =2¢° =€ .
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