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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,3 (1976)

ON LOCAL AND GLOBAL MODULI OF CONVEXITY 1)

Josef DANES, Praha:

Abstract: There is given a new proof of the equality
of alTl "natural® definitions of local (global) moduli of
convexity in normed linear spaces.

Key words: Normed linear space, local modulus of con-
vexity, global modulus of convexity, monotone functions.

AMS: Primary: 46B99 Ref, Z.: 7.972.22
Secondary: 22448, 52410

The goal of the paper is to show that all "natural" de-
finitions of .1ocal (global) moduli of convexity in normed
linear spaces coincide. For global moduli of convexity this
was shown by M.M. Bay [2, Lemma 5.1] and for local moduli of
convexity by Bui-Min-Ci and V.I., Guraril [1, Proposition 1] .
' Bui-Min-8i and Guraril’s proof relies upon a lemma (1,
Lemma 1) which coincides essentially with our Lemma 2. But
their proof contains an inaccuracy {(being a consequence o}
their picture 1). Indeed, they assert that, in our notation,
the straight line x(g¢) + t(x(y (¢ )) - x(9)), te (-0,+®),

1) The results of the paper are a part of the author’s commu-
nication "Some remarks on nonlinear functional anslysis"
" at the Summer School on "Nonlinear Functional Analysis
and Mechanics", Stard Lesnd, High Tatras, Czechoslovakia,
Sept. 23-27 (1974).
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intersects the half-line tx(y (¢”)),t=1, which is easily
seen to be false; for notation see below.

Our proof of the equivalence of different definitions
of local (globa_l) moduli of convexity differs from that of
Bui-Min-Ci and Guraril [1] (Dey [21). "

We shall begin with the following lemma on real func-
tions.

lemma 1, lLet —0 &« ¢ < B<£+00 and f a real function
defined on (e, (3 ). If there exists an upper semi-continuous
function ¥ : (ec,R@)—> (o¢,3) such that:

(i) 1 (t)<t for each te (oc,3); and

(ii) £(+")2 £(t) for each te (oc,3) and t'e (3 (t),t),
then f is nonincreasing.

Proof. Let te (=,3) and set s(t) = min<{2t, tZB},

€ (t) =-supdfy (t’) - t': t'e [t,8(t)]3 end oe (t) =
= min {s(t),t + € (t)J . Clearly t<s(t)<+oo . 4As o is
upper semi-continuous, we have € (t)éo and 2e (t)>t. For
each t'e (t,22(t)), one has 7 (t)&t’ - € (t)<t<t’, so
that £(t’ )« £(t) by (ii). This and (ii) easily imply that f
is nonincreasing on (e, (3). The author thanks to J. Reif for
a simplification of the original proof of the lemma,

Remark 1. Lemma 1 remains true with (ec, 3) replaced by
(<,3] where ~0 <« o < @<+ 00 -

Remark 2. If the condition (ii) of Lemma 1 is replaced
by

(i17)  £(t")>f£(t) for each te (ec,@) and t’e (y(t),t),
then £ is (strictly) decreasing on (ec,(3).

In the following lemmas and proposition, (X, ll.ll) is a
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two~dimensional real normed linear space, B its clcsed unit
ball at O and S the boundary of B, For € € [ C,2] and x&3§
let us define d"(x,e) = inf {1 - | 3—3-1)[ tyes, ly - xl -

= €% (the local modulus of convéxity of X at x).

Lemma 2. Let x in S be given. Consider a Euclidean sys.
tem of coordinates in X such that the origin of this system
coincides with that of X and the half-line tx, t>0, is the
positive § -axis. For e [0,20r), let x(g) in 5 be defin-
ed (uniquely) by the condition: arg x(g ) = ¢ . Then:

(1) llx+ x(¢ )l is a nonincreasing continuous funzt-
ion for ¢ € [O,ar] ;

) Ix+ x(g) I is a nondecreasiné continuous func-
tion for ge Car,2ar];

(3) lx-x(p)ll is a nondecreasing continuous funct-
ion for ge LO,ar 1

(4) llx-=x(g)ll 4is a nonincreasing continuous func-
tion for ¢ge Lar ,20r] &

Proof. From x(¢p+a) = - x(@) (¢ € LO,ar] ) and from
the symmetry it follows that it is sufficient to prove the
assertion (1).

From the equivalence of .|| and |. | , where ‘I . is
the Euclidean norm corresponding to the Eucli@ean system of
coordinates we have fixed, it follows that x(g) is continuoﬁs
(in X, 1.11)) for @ e CO0,2ar], i.e. x(.)e C(LO,2a],

(X, 1. 1)), As x + x(g)+0 for each ¢ e [ 0,9 ), the func-
tion 74 (¢ ) = arg (x + x(¢)) is continuous on [0, ). As
x + x() ( @e [0,ar)) lies in the half-space {(f ,7):

: n, Z 0} and not on the regative § -axis, we have that
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4y (.): L0, or)—>L0,o). For @ & [ 0,ar), let A(®p) be
the closed convex angle (cone) with vertex at O and generat-
ed by {x,x(¢ )} and B(g ) the closed convex angle (cone)
with vertex at - x and generated by {x,x(@ )% .

If04 @' <« @< , then A(¢')cA(g ). From this and
O0€ (- x,x) it follows that B(g’)cB(@). As A(y(g)) =x +
+ Blg), Ay (¢’)) = x + B(g’), we have Ay (@’))cA(y(9)),
so that ¥ (9')£ ¥ (g). As O€ (- x,x), we have, for @ €
€ (0,), Blg) + x = A(y¥ (@) § Al@), i.e., ¥ (p)< @
Clearly ¥ (¢)>0 for @ € (0,97 ). Therefore 7 (.) is a non-
decreasing continuous function from [ O,a) into L[O0,dr) with
yvigl<@ for each g€ (0,r) and yp(g) =0 iff ¢ =
= 0, ‘

Iet e (0,9r) and @ e (y(@),9) be given, Then
.x(q’)e Int (A(@)INA(y(xp))INS, so that, by the convexity of
B, x(¢’) e H, where H is the closed halfplane with O H =
={x(¢) + tix(y(g)) - x(¢)): te(-@w,+®»)} and 04 H.
From the convexity of B it follows that x(¢”)e H and hence
also x(¢p ) + t(x(@”) - x(¢))eH for all tz0. As x(¢ (g ))e
€ H, we have x(¥ (%)) + t(x(¢”) - x(¢p })e H for all t=0,
~ From x(q@ ),x(% (¢ ))e S we conclude that I x(3r(g)) +
+ t(x(¢’) - x(cp))l = 1 for all t=20. But
uz (x+ x(g@N | x+ x(ax)l Ls x(y(g ) + t,(x(e) -

- x(cg)), where t_ = ll x + x(c) |l "1 (because x(y (@ )) =
= (x+x(g)) lix+ x(g)ll “1). Hence Wull = 1, i.e.,
lx+x@)l=z lx+x(qp)ll . Setting (e, B3) = (0,37),
£(¢) = I x+ x(q)ll , we see that the hypotheses of Lemma

1 are satisfied, and hence the assertion (1) follows, because
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£(0) =2zf(g)2f(or) =0 forall el O,n].
Proposition 1. o7 (x,€) is a nondecreasing function
of € € [0,2] (for each xe€ S).
Proof. Clearly o™(x,0) =0 < J(x,g) for all € €
e[o,é] .let 0£ e <e’<£ 2 with J(x,e')<1, Let y'¢ S
be such that J"(x,e’) =1 - "5—3—1:” (the existence fol-

lows at once from a continuity and compactness argument).
Teke a Euclidean coordinate system as in Lemma 2 such that
¥ = x(¢”) with' @’e (0,4r) (this is possible tecause
g (x,e)<1). Let y = x(¢), @ e (0,ar) be such that
Ilx-yl=¢€ .48 ¢'> ¢ , we have by lamma 2, (3), that
0 < < @, By Lemma 2, (1), it follows that

S, =1 -|E5fan - | 2txel )z o |xrx(e)],
2 dx,e) .

A8 J(x,e')<1 for any ¢’€ [0,2), the proposition follows.
Lemma 3. For each x in S and €€ [ 0,2] we have

Iplx,e)= inf {1 - |E5E|: yes, Ix-ylze} =

= d(x,¢).

Proof. This follows at once from . d5(x,€) =

= inf 4 (x,e’): € € L€,2]% and Proposition 1.

) Iemma 4. Let x in S and y in Int(B) be given. Then the-
re is a point z in S such that |y - xll=lz - x| and
lz+xlz llyg+xl. , _

Proof. 1) Suppose that y ¢ (- x,x). Let u, veS be ﬁo-

fined by the following conditions: u = - x + t(y + x) for
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some t>0 and v = x + 8(y - x) for some s>C., Take a Euclide-
an coordinate system as in Lemma 2 such that x = x(0) and u =

x(w) for some @ e (0,ar). Then v = x(» ) for some » €

[

(w,7) (easy). Take ¢e (0,a) such that Ix - x(g)ll =

ly-xll=ze 28 [[x=x(p)l >0 x=-yl

n

e , we
have, by Lemma 2, (3), » > <& . Suppose that ¢ £ @ . Then,
by Lemma 2, (1), Ix+x(g)l =z Il x+x() >l x+y),

n

so that we can set z = x(¢ ). Now suppose that & < & . As
e (w,»), y€Int(T), where T is the (closed) triangle
with vertices x, - x, and x(¢ ). This implies that

Ix - x(g)l + 1l xt) = )zl x=-yl +ly-(xl.
a8 lx-x(¢g)l = llx-yll =¢ , we have llx + x(g) >
zlx+yl, so that we may set z = x(¢p).

2) If ye(~- x,x) and z in S is such that [ 7 - x| =

"

ly-xU, then lx=-2zl + llz+xllz 2/lx|l

]
n
n

"

ly -xll + ly + x| , and nence z satisfies the assertion
of the lemma.
Lemma 5. For xeS and e€[C,21 ,

d(x,e) = int {1 - |T5ZX] :yeB, Iy-xl = ¢}
(= d5(x,€)) = inf 41 - “%)] tyeB, lly -xl=¢53

(= dyx,e).

Proof. It is clear that J'(x,e) = dg(x,a) =
254(:{,6). Let w in B be such that llw - x| z¢ and
lw+xl =swpdllygy+xl:yeB, ly-xlzet .Let g =
= lw-xl and take 2€$S {by Lemma 4) such that [z - x | =

‘

=g and lz+ x| 2l w+ x|l (indeed, it is clear that

lz+xll'=lw+xl). Thus we have J"(x,e) £ J(x,g') £
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él-lz+xllél-ll"+xl( (x,e).
Lemma 6. If we define, for £ €[ 0,21 ,

d(e) =inf §1 - 25X | : xes, yes, Ix-yl =¢? ,

dp(e) = inf {1 - | Z5X| : xes, yes, Ix-ylzed,
o3(e) = inf {1 - [EFX| :xes, yeB, Ix-y]| =§§,
oy (e) =inf 41 - |E5E| :xes, yeB, Ix-ylze},
oy(e) = inf {1 - |25X| : xeB, yeB, Ix-3yl=¢},
o6le) =inffl - |[Z5X| :xeB, yeB, |x-ylze},

then dJ(e) = dL(g) = di(e) = dy(e) = d5le) = dgle).
Proof. It is clear that the following inequalities hold:
dle) z d3(e) 2 Igle)
v % IV
do(e) z d,(e) z Fgle).

Therefore it is sufficient to prove that J"s(e) =dle).
Let x and y in B be such that Ix -y Ze and dgle) =

-1-|243)

Xx€S or yES. We may suppose that x€S. Set ¢ = |lx-y | «
Then dg(e) =1 - | L5E [zdj(x,e’) = dlx,e) = dlx,e)2

Z & (¢) (by Lemmss 3 and 5) and the lemma follows.

. It is easy to see that 4x,y5/) S+4, i.e.

Let X be a normed linear space (over the field of real
or complex numbers) of real dimension greater than one, B its
unit (closed) ball at O and S the boundary of B. If d’;_(x,s)
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and di(e) (i =4, 2,3,4, resp. i =0, 2,3,4,5,6) are de-
fined as above for X of dimension two, then, clearly,
Ji(x,e) = inf Ji(x,e) and J%j(e) = inf o' (e ), where
Y runs over all two-dimensional real subspaces of X and
d’f(x,.) and d’%(‘.) denote the corresponding oj(x,.) and
di(.) for Y. ,

From the above results we obtain at once the following

Theorem, Iet X be a (real ‘or complex) normed linear
space of real dimension = 2 and x€X, |l x|l = 1. Then:

(1) oJ7(x,.) is a nondecreasing function:

(2) o(x,.) = d'z(x,.) = d'3(x,.) = d'4(x,.);

(3)- J(.) is a nondecreasing function;

4y J.) = () = 073(.) = d‘;(.) = dvs(.) = d;(.).
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