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ON IP-ESTIMATES FOR SOLUTIONS OF ELLIPTIC BOUNDARY VAIUE
PROBLEMS

Miroslav KRBEC, Preaha

N

Abstract: The purpose of this paper is to generali~
ze the known regularity results concerning the Dirichlet
problem for lirear elliptic partial differential equations
of order 2m with L%* -coefficients to the case of general
boundary value problem in variational formulation. A regu=-
larity theorem in Sobolev spaces ’fp‘(.ﬂ.) is proved for p

near to 2.
Key words: Sobolev spaces, complementary conditions,
properly elliptic operators, a priori estimates, regularity.
AMS: Primary 35J40 Ref, Z.: 7.955.213
Secondary 35D10

1. Introductions In the papers [31,[5], the authors
obtained regularity theorems for weak solutions of the Di~
richlet problem for linear elliptic partial differential
divergence equations with bounded and measurable coeffi=-
cients, These results are an extension of the known classi~
cal existence and unicity theorems in Sobolev spaces
W’zn(.ﬂ.), where Q0 is a bounded domain in N-space EN, on spa-
ces Wnp‘(.il), where p is near to 2 (m = 1 inx 3] and m arbit-
rary integer in [5]). For p large enough there are counter-
examples (see, e.g.[3]). In this paper there will be proved
a regularity theorem of the mentioned type for general boun-
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dary value problem in variational form. At first there is
obtained a suitable a priori estimate for functioms in
W’;(Q.) which represents certain bounded linear forms on
w‘;, (2) (p22 ang p’= p/(p - 1)) - "right hand side of equa-
tions". These estimates are then applied to general b.v.p.
according to the method used in [5]. The precise statement
of the problem and the main result are in Sectiom 3.

I am obliged to J. Stard and S. Fulfk for their valuab-
le suggestions and kind assistance.,

Notation. The symbol fl means in all this paper a boun-
ded domain in EY (N2 2) with regular boundary &.0. in the
sense of [ 2], Points of EY will be denoted by x = (xl,...
ceesXyle If o = (&Cy;0e., oCy), then the operator D is

defined in a usual way, i.e.
|
alcc

D* =
= = =%
8.x1 3.><N

wherelocl-oc1+...+ «y - is the length of o .
A1l the following functiomml spaces are real. Let p>1,

821 end set p° = p/(p - 1). Let us introduce in C°(01) the

norm
tul, = ([, 2 D% )

The completion of C®({Y) with respect to this narm is the

Sobolev space W;(Q.). The space r;'l/P(am, resp. Iss‘l/p(am

is defined as a completion of C%® (3f)) with respect to the

norm

ar i

bk ithn = g s o

rsa on 02
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resp. 4
lwl\ = S »
=AUy p J:“E':cm faﬂ“”d
nﬂrl/bf"/ﬂ"ﬁ”

The norms in spaces IP(Q.) and LP(8.0) will be denot-
edby lel, ., -

The word "operator" means "linear partial differential
operator". Different constants are sometimes denoted by the

same symbol.

2, A priori estimates. ILet

A= = (-4)‘“‘3"(4& ()D?)
1l | plem r

where 8-:;3 € C""G)—.) and m=1 is a fixed integer. Denote
by P(x, .) the characteristic polynomial of A, Suppose that
A is elliptic in 0 . Then A is properly elliptic in. a2
(see, e.g. [2]), i.e. for each x ¢ B  and linearly inde-
pendent vectors § , ?’6 EN, the equation P(x,§+ t§7) =
= 0, where t is complex variable, has no real roots and just
half of its roots (including multiplieity) has positive ima-
gimry part. Denote these roots by t,(x,§,§ )ye-..
cvsy tm(x,§ , g’) and define the polynomial

M(x,g y§5t) = (¢ - tl(x,g,g’))- cee o (t =t (x,§,§)).

Definition 2.1. Any finite set of operators on 3 is

called a normal set on 2{) if orders of these operators
are different and 9.  is non-characteristic for each of

them.
Any system of k operators on 3fL is said to be a Di-~
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richlet set of order k if it is a normal set on 9. and

orders of these operators are less than k.

Definition 2.2. Iet (H 3' be any system of ope-

J=°
rators on a.cx with characteristic polynomials

1 Q;(x, .)} =°. The system {HJ}FO is said to satisfy the
complementary conditioms with respect to A on 8L (or to
cover A on 8Q. ) if for each x e 80 and §, §'e BN
N\ 40} such that § is tangent and $’ is normal to 8.0

k-1

at the point x, the polynomials -in(x,g-r tg’)}:‘:o in the
complex variable t are linearly independent mod the polyno-

mial H(x,g 1§ t).

Let {Ba}ﬁmgl be a Dirichlet set of order 2m on 90 .
Suppose that coefficients of BJ- are in C®(350 ) and deno-
te by ma- the order of Bj. Then there exists a unique system

£ B&}%‘:;l of operators on 3£ which is a Dirichlet one
of order 2m on 9.1 so that coefficients of B3 are in

€C® (50 ), the order of Bg is 2m - 1 - mj and the equality

, 2m-1 P
fnﬂrAu dx = faqurd..x + fan 1}2‘0 Biu Bénr as

where A” is the formal adjoint of A, holds for each u, v &
€« C¥(11) (see [21). Denote

U=4{veC®(QL); Bjv=Oon 30 , 04jém - 13,
‘={veC(L); Bafv =0on 30 ,m&j<2m-13%.

Theorem 2,1, Iet A'I(O)'n U=40% and suppose that
-iBa} J_l satisfy the complementary conditions with respect
to Aon 30 . Then for each p>1 there exists cp” 0 so
that the inequality
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m=]
Ll pt e, € pum  [orhudxs ZoUBiuly m 1p,q)
“”“m,@'g 1
holds for each ue C¥(1).

Proof of this theorem can be found in [6] .

Remark 2,1, Under assumptions of Theorem 2.1 for

each p>1 there is cp>0 such that the inequality

m-1

(2.1) lw ummé ey ¢ nufy, j;vAwoLx+é§°ll:BéulL,,,.m;uM)
Y

where

V/i=4wvelC®(), B;'v'ao on 3fL for 3 such that

méé- £2m -1 , M

z
3 m ¥,

hoXis for each ue C®().

Proof. Obviously U’c V’. let Ul;" resp. Vl;,, be the
closure of U, resp. V’, in f;,(n) and ve Vl;,n c®().
Then there is a function weC%® (M) such that w belongs to
the closure of D (L) in ';, (L) and v - we U’ (see, e.g.
{7)). A8 D (D)cU, we have v = (v ~ w) +weU’,. Thus

p’
V5, cUy, and (2.1) follows.

3. A regularity theorem. At first let us fix nota-
tion. Let

= D %(a, )DP)

=
lxl, b BlEm

leel A
D7D, 2%,

where a_, e L¥(0) and o, is the Kronecker symbol. De-
*~ note by B and B the corresponding bilinear forms on

X

Tl iplém
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Wg(.ll I Wx;,(il), i.e,

B(M,,mr)sf = Y D"fv-_Dﬂu, dx

‘n Ichiplém  <B ’

i(u,nr) = f

nlaczn,:lplém °’;/3-D v DPudx ,

Iet 4Bj‘§l§;]°‘ be a Dirichlet set of order m on 5 of ope-

rators with coefficients in C®(9 ). Denote by mj the or-
der of B,j‘ Let us fix some integer r € {O,m - 1% and set

V=4veC®(R); Byv =0 on 3 , 0zj<r -13.

By V), denote the closure of V im w‘;(n). There exists a uni-
que normal set on 3Ll of operators {Fj’:?;g‘ with coeffi-
cients in C¥(3£L) so that the order of F. is 2m - 1 - m;

J
and the equality ’

~ m-1 )
B (w,v) = j‘;;rx,u.. d.a(+‘];n '?goBa'-V Fyu as

hoX s for each u,veC® (1),

Definition 3.1, Let p22, £ e IP(0) fo || £ m,
u e w;‘m.), gje IP(B0L) for r&£j4m - 1.

A function uc w‘;‘(.n.) is sald to be a solution of the
variational problem ’

(3.1), u - u,e Vp,

(3.1), B(u,w) = [ £ 0vax+[ S gB.vas
'p u’vg.a.hclérm.“ V. & J;n—;%»gjjv ?

if (3.1)aL is satisfied and (3.1)b holds for each V€ Vp, .
Lemma 3-10

let @ >2. Then there exists cq> 0 so0 that
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for each p e{(2,a?, f_ € P(2), la! £ m, there is a

unique solution u_e Wg(ﬂ.) of the variational problem

p
3.2) { ueVp,
B(u,v) = '[0. |«\4—mf°" D*v dx,
and
1-2/p P 1/p
(3.3) L 2V T he,p

Proof. Let pe<2,q> and f e LP(.Q.). For x|l £ m
let {f&n) 3} c @ (QL) be such & sequence that fe(‘n)——> £,
in IP(Q). The bilinear form B is coercive in V and there-.
fore the operators Bo""’Br-l’ Fr""’Fm-l cover A on 80
(see, e.g.[4]; this holds for more wide class of bilinear
forme and boundary operators and a proof different of the
one in [41 can be given (to appear)). For each neN let

u(n)c C%(0) be the unique solution of the classical b.V.p.

Zu(n) = = (-1)“‘, fa(‘n) on 0,
lxt£m
B, W =0 on 80 , 0£jer-1,
F, u® 20 on 0, rejim-1. :

Then u{™ is a solution of (3.2), where %gn) is written in

Dila ce of £, . As A is formally selfadjoint, we have
~ . ~ n -1
fov Awdx = [puBordx+ [ g—io(Bé“Pﬁ'”'Bé” FauddS,
am, v e CYCR) .

By Theorem 2.1 and Remark 2.1 there is cp>0 such that
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() ~
N llmm £ c_'p m IAMAM adx <
“V“’""IW=4
m) 41' )7/11—
c, (= LE

Thus {'ﬁ(n)§ is a Cauchy sequence in W';(.Q_). Denote u, =
(n) .

= lim u in w’;(n). Then u;, is the unique solution of
(3.2) and
it
Mgl € CpC 2 VET"

The constant ¢, can be taken equal to 1. Now, let us inter-
polate between 2 and q according to Riesz-Thorin’s theorem
(seé, e.g.[81) and (3.3) follows.

Iemma 3.2, let q>2. Then there exists cq>0 so that
for each pe< 2,9 > , gjeLp(an. ), P& j4m - 1, there is a
unique solution uye W;‘(.Q.) of the variatiomal problem

uevp,
-~ m-1
B(u,v) = f g

on x

me-q
p 1/

The proof is similar to the one of Lemma 3.1 and is
omitted. Note only that there is used the fact that P(34 )c
c I’Ss'l/ P(2.0) with continuous injection for s21, integer.

Corollary 3.1, lLet q>2. Then there exists cq>0 8o

that for each p€<2,0> , f e P(Q), lc| £ m, and g5 €
€ IP(340), féj‘m - 1, there is a unique solution u,e l;‘(.n.)
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of the variational problem

weV, , |
ﬁ‘“’“’“& (S & D 1rcL.x+fan 933 radS

and

1-2/0 n 4:« 1/
Iiu?llmméci (“2’__. £l ) +c(2 I ;oa)

Remerk 3.1. Using the same proof method, one can prove
the following assertion: If a;n € C*(0) and A is formal-'
ly selfadjoint and V-elliptic (i.e. A = A’ and there is ¢>0
such that B(v,v)z ¢ vl 2 n,2 for ve V), then for each q=>2
there is cq> 0 such that for each p&€<2,q% , £ .« P(a),
lc| £ u, and gjelcp( L), r&j4m ~ 1, there is a unique
solution u e w"'(.o.) of (3.1),, (3.1), with u, = 0 and

bl o e LG E N 0], Y, S I

. Vo czu

1°'n

Theorem 3.1, Let nd(seL”(.Q.)andn“ﬂ =85, for
«l,I3l £ mand '

. . ,
£ |
(3.4) ¢, I§1 e'“’lii‘b‘ém Qs () Fc§p 2 0yl §

uniformly in L for some O< cy<cCye Then there exists P>2
so that for each p €< 2,P) there is c(p)> 0 such that for
each £, & IP(Q), lacl< m, use Wy(Q), and gge (o0 ),
r<j<m - 1, there is a unique solution u,€ ":(_ﬂ.) of (3.1),,
(3.1),, and

(3.5) My My, 2 cCp)( 2 MM, +
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nA E4
+%§o I B}“’O“M-«Mj"!/ﬁﬂv Ty Taylond -

Proof. At first suppose that 8gp€ c® () ana u, =

0. let q>2 be arbitrary, pe<2,q> , £« LP(.Q.), 8; €
IP(50). Then by Remark 3.1 there is a unique solution

m

<]

of (3.1),, (3.1), which belongs to Wm(.O.). The equality

i(u.,ar)::f = (= (d,-dGa ”)Dﬂu)_Dxard.‘x

o \klem \plem B
nn.-4

-1 . B.
v+ [ |§&mf D rdx + ¢ 9; By rdS

»[m F=x

is satisfied for each ve Vp

< , for which | ol £ m, then

b

, o I ey is the number of all

-1
(fnlzmmiwzmw; - & ay ) Do (Pas)™

-1 B8
e - A, <
1%, 114",.4 fa |eczl:|[3|éaw(d:‘/3 ¢ @up) D modx «
ltl€m, (-2
4/2 -4 ot 1/2
o Z mumsd:‘ﬂ’%“"‘/’)hh) Fimem %p™ -Gy P aa DPuY Esve

2)1/26(— &

A0 2.1 .
5(4-c4¢;)’wfn(‘§'m%>/’f (5 (%)
" 1,
é(’(-cqc';}w(f; zlbm “‘)4"'/291_‘,() .
IS cD"‘u‘ﬁ*”dx)’/f’g
lect£

) 1(1 —)
£ (1~ e, 2)(’.3 ﬂuﬁm,# .

By Corollary 3.1 there is cq>0 such that

i J-a/p 1 27
il & &P 2 el v Sy Fa gl
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+(4-c4c;4)(cic;/2) 1-2/1 l!u,llm,,,, .

Therefore for p € {2,q ) satisfying
-1 1/2\4~2/n
(1-c e, ) (e e, ) < 1

which is equivalent to

log,c: Cy
.6 P(g) =
3.6 e Mgtcgcg“('l—-_c,,cf)]

we have
m1 )
(3.7 Ny & e () (2 N 0y, + a,%» g lo,n? 5
where c¢(p,q)> 0 does not depend on f,, and g;e
Suppose now that 8y p € L® (). For Iaol,)[slé m let
{agf)ﬂ ¥ c C®(N) be such a sequence that (3.4) holds with

a;n% in place of &, ,; and a‘g’)ﬂ —> 8y, in measure on
Q . Let {u(n)}c W"p‘(.ﬂ.) be the sequence of corresponding

solutions., By (3.7) we can suppose without loss of generali-
ty that {u®} is weakly convergent in Vg(.ﬂ.) to some
function Ue Vg(.&l), whenever p satisfies (3.6). Then W is

the unique solution of (3.1),, (3.1), and (3,7) holds for ¥,

as well,
Finally, let O%ug.e wg(_o.) and suppose that p satisfies

(3.6). Further, suppose (without loss of generality - see,

€80 C 73) that

n-1
(3.8) Il,«.al(mmé C(ffb)i:go “Bz",u.a “m-mg'_.—'ﬁﬂ,h P

where c(p) depends only on p and L . By the above conside-

rations there is a unique solution w e Wg(.ﬂ.) of (3.1),,
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(3.1), with homogeneous boundary condition (3.1), and with

2 ¢ in (3.
e ‘@%’m‘ «p@ DUu, in place of £ in (3.1),, and

(3.9) Nwyl,, o % e (fn,9) (Iﬁm £, g, +

+c,C (p) 7%: “B.é,,u«o “m-ma',-'i/fp,fy"'
m-1 )

+ 5)‘_ Il %y "o,@ .

The functlon u, = vy +u, is the unique solution of (3‘1)3’

(3.1),, and (3.5) follows from (3.8) and (3.9). Obviously,

it suffices to set

.

P = sup min (q,P(q)).
q>2

The theorem is proved.

Remark 3,2, The condition (3.4) can be weaker for some
special problems. For instance, if 4 BJE‘S i is a Dirichlet
set of order r on 3. , then it suffices to suppose that

8gp = 85 ORI for r&lec | [ 31 £ m and that

2 2
gl = x.'-%c\ \plem %p(X)§e § % 0, L§l

uniformly on fL .

k 3.3. The conditions on A{ and coefficients
of {BJ} ?"g need not be so strong as they are supposed in
Theorem 3.1, Analysing methods of proofs, we see that vali-
dity of used a priori estimates and an existence of classi-
cal solutions of the considered classical boundary value

problems are sufficient. The weakened conditions on the exis-
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tence of classical solutions are described in [1]1 and one

can verify that proofs of a priori estimates in [6] (which

are

f1l

[2]

31

(41

L 5]

tel

L7l

tsl

based on [11) remain valid under those conditions, too.
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